Page 202 - 磁共振成像2024年7期电子刊
P. 202
磁共振成像 2024年7月第15卷第7期 Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7 综 述||Reviews
Reson Imaging, 2020, 52(6) [2024-03-06]. https://pubmed. ncbi. nlm. cancer subtypes on the diagnostic accuracy[J]. Eur Radiol, 2016, 26(5):
nih.gov/32227407/. DOI: 10.1002/jmri.27145. 1474-1484. DOI: 10.1007/s00330-015-3948-0.
[14] CABALLO M, SANDERINK W B G, HAN L Y, et al. [32] LIU S G, REN R M, CHEN Z Q, et al. Diffusion-weighted imaging in
Four-dimensional machine learning radiomics for the pretreatment assessing pathological response of tumor in breast cancer subtype to
assessment of breast cancer pathologic complete response to neoadjuvant neoadjuvant chemotherapy[J]. J Magn Reson Imaging, 2015, 42(3):
chemotherapy in dynamic contrast-enhanced MRI[J]. J Magn Reson 779-787. DOI: 10.1002/jmri.24843.
Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273. [33] 王晓, 朱丽钰, 查小明, 等 . 全容积表观扩散系数直方图定量分析术
[15] NEMETH A, CHAUDET P, LEPORQ B, et al. Multicontrast 前预测不同亚型乳腺癌新辅助化疗后病理完全缓解的价值[J]. 中华
MRI-based radiomics for the prediction of pathological complete 放射学杂志, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-2019
response to neoadjuvant chemotherapy in patients with early triple 0522-00439.
negative breast cancer[J]. MAGMA, 2021, 34(6): 833-844. DOI: WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis
10.1007/s10334-021-00941-0. of apparent diffusion coefficient for the prediction of pathological
[16] MOHAMED R M, PANTHI B, ADRADA B, et al. Abstract P6-01-06: complete response to neoadjuvant chemotherapy in different subtypes
multi-parametric MRI-based radiomics models from tumor and of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/
peritumoral regions as potential predictors of treatment response to cma.j.cn112149-20190522-00439.
neoadjuvant systemic therapy in triple negative breast cancer patients[J/OL]. [34] HE X P, WANG Z S, ZHOU Y, et al. The value, diagnostic efficacy and
Cancer Res, 2023 [2024-03-06]. https://www.researchgate.net/publication/ clinical significance of functional magnetic resonance imaging in
368980286_Abstract_P6-01-06_Multi-Parametric_MRI-Based_Radiomics_ evaluating the efficacy of neoadjuvant chemotherapy in patients with
Models_from_Tumor_and_Peritumoral_Regions_as_Potential_Predictors_ triple negative breast cancer[J/OL]. Front Oncol, 2023, 13: 1132186
of_Treatment_Response_to_Neoadjuvant_Systemic_Therapy_in_Triple_ [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37064088/. DOI: 10.3389/
Negative_Breast. DOI: 10.1158/1538-7445.sabcs22-p6-01-06. fonc.2023.1132186.
[17] ZHOU Z J, ADRADA B E, CANDELARIA R P, et al. Prediction of [35] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:
pathologic complete response to neoadjuvant systemic therapy in triple extracting more information from medical images using advanced
negative breast cancer using deep learning on multiparametric MRI[J/OL]. feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.
Sci Rep, 2023, 13(1): 1171 [2024-03-06]. https://pubmed.ncbi.nlm.nih. ejca.2011.11.036.
gov/36670144/. DOI: 10.1038/s41598-023-27518-2. [36] ABDEL RAZEK A A K, ALKSAS A, SHEHATA M, et al. Clinical
[18] KATAOKA M, IIMA M, MIYAKE K K, et al. Multiparametric applications of artificial intelligence and radiomics in neuro-oncology
approach to breast cancer with emphasis on magnetic resonance imaging[J/OL]. Insights Imaging, 2021, 12(1): 152 [2024-03-06]. https://
imaging in the era of personalized breast cancer treatment[J]. Invest pubmed.ncbi.nlm.nih.gov/34676470/. DOI: 10.1186/s13244-021-01102-6.
Radiol, 2024, 59(1): 26-37. DOI: 10.1097/RLI.0000000000001044. [37] TAGLIAFICO A S, PIANA M, SCHENONE D, et al. Overview of
[19] MARINOVICH M L, SARDANELLI F, CIATTO S, et al. Early radiomics in breast cancer diagnosis and prognostication[J/OL]. Breast,
prediction of pathologic response to neoadjuvant therapy in breast 2020, 49: 74-80 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/31739125/.
cancer: systematic review of the accuracy of MRI[J]. Breast, 2012, DOI: 10.1016/j.breast.2019.10.018.
21(5): 669-677. DOI: 10.1016/j.breast.2012.07.006. [38] BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes
[20] EISENHAUER E A, THERASSE P, BOGAERTS J, et al. New with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin
response evaluation criteria in solid tumours: revised RECIST Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
guideline (version 1.1)[J]. Eur J Cancer, 2009, 45(2): 228-247. DOI: [39] CORREDOR G, BHARADWAJ S, PATHAK T, et al. A review of
10.1016/j.ejca.2008.10.026. AI-based radiomics and computational pathology approaches in
[21] LOO C E, STRAVER M E, RODENHUIS S, et al. Magnetic resonance triple-negative breast cancer: current applications and perspectives[J]. Clin
imaging response monitoring of breast cancer during neoadjuvant Breast Cancer, 2023, 23(8): 800-812. DOI: 10.1016/j.clbc.2023.06.004.
chemotherapy: relevance of breast cancer subtype[J]. J Clin Oncol, [40] PENG S Y, CHEN L Q, TAO J, et al. Radiomics analysis of
2011, 29(6): 660-666. DOI: 10.1200/JCO.2010.31.1258. multi-phase DCE-MRI in predicting tumor response to neoadjuvant
[22] PANTHI B, ADRADA B E, CANDELARIA R P, et al. Assessment of therapy in breast cancer[J/OL]. Diagnostics, 2021, 11(11): 2086
response to neoadjuvant systemic treatment in triple-negative breast [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34829433/. DOI: 10.3390/
cancer using functional tumor volumes from longitudinal dynamic diagnostics11112086.
contrast-enhanced MRI[J/OL]. Cancers, 2023, 15(4): 1025 [2024-03-06]. [41] LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for
https://pubmed.ncbi.nlm.nih.gov/36831368/. DOI: 10.3390/cancers1504 pretreatment prediction of pathologic complete response to neoadjuvant
1025. chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res,
[23] PARK J Y, KIM Y S, LEE S E. Breast MRI for evaluating residual 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
tumor size following neoadjuvant chemotherapy: clinicopathologic factors [42] ADRADA B E, ABDELHAFEZ A H, MUSALL B C, et al. Abstract
and MRI imaging features affecting its accuracy[J]. Curr Med Imaging, P6-02-03: quantitative apparent diffusion coefficient (ADC) radiomics
2022, 18(8): 876-882. DOI: 10.2174/1573405617666211117141057. of tumor and peritumoral regions as potential predictors of treatment
[24] HYLTON N M, BLUME J D, BERNREUTER W K, et al. Locally response to neoadjuvant chemotherapy (NACT) in triple negative
advanced breast cancer: MR imaging for prediction of response to breast cancer (TNBC) patients[J/OL]. Cancer Res, 2020, 80(4_
neoadjuvant chemotherapy: results from ACRIN 6657/I-SPY TRIAL[J]. Supplement): P6-2-03-P6-02-03 [2024-03-06]. https://www.researchgate.net/
Radiology, 2012, 263(3): 663-672. DOI: 10.1148/radiol.12110748. publication/340217846_Abstract_P6-02-03_Quantitative_apparent_diffusion_
[25] PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted coefficient_ADC_radiomics_of_tumor_and_peritumoral_regions_as_
MRI findings predict pathologic response in neoadjuvant treatment of breast potential_predictors_of_treatment_response_to_neoadjuvant_chemothe
cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): rapy_NACT_in_triple_ne. DOI: 10.1158/1538-7445.sabcs19-p6-02-03.
618-627. DOI: 10.1148/radiol.2018180273. [43] HUSSAIN L, HUANG P, NGUYEN T, et al. Machine learning
[26] LI W, ARASU V, NEWITT D C, et al. Effect of MR imaging contrast classification of texture features of MRI breast tumor and peri-tumor of
thresholds on prediction of neoadjuvant chemotherapy response in combined pre- and early treatment predicts pathologic complete
breast cancer subtypes: a subgroup analysis of the ACRIN 6657/I-SPY response[J/OL]. Biomed Eng Online, 2021, 20(1): 63 [2024-03-06].
1 TRIAL[J]. Tomography, 2016, 2(4): 378-387. DOI: 10.18383/j. https://pubmed.ncbi.nlm.nih.gov/34183038/. DOI: 10.1186/s12938-021-
tom.2016.00247. 00899-z.
[27] MUSALL B C, ABDELHAFEZ A H, ADRADA B E, et al. Functional [44] HACKING S M, WINDSOR G, COOPER R, et al. A novel approach
tumor volume by fast dynamic contrast-enhanced MRI for predicting correlating pathologic complete response with digital pathology and
neoadjuvant systemic therapy response in triple-negative breast cancer[J]. J radiomics in triple-negative breast cancer[J]. Breast Cancer, 2024,
Magn Reson Imaging, 2021, 54(1): 251-260. DOI: 10.1002/jmri.27557. 31(3): 529-535. DOI: 10.1007/s12282-024-01544-y.
[28] EOM H J, CHA J H, CHOI W J, et al. Predictive clinicopathologic and [45] BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and
dynamic contrast-enhanced MRI findings for tumor response to peritumoral radiomics for the pretreatment prediction of pathological
neoadjuvant chemotherapy in triple-negative breast cancer[J/OL]. AJR complete response to neoadjuvant chemotherapy based on breast
Am J Roentgenol, 2017, 208(6): W225-W230 [2024-03-06]. https:// DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 57 [2024-03-06].
pubmed.ncbi.nlm.nih.gov/28350486/. DOI: 10.2214/AJR.16.17125. https://pubmed.ncbi.nlm.nih.gov/28521821/. DOI: 10.1186/s13058-017-
[29] LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE) 0846-1.
MRI[J]. Magn Reson Imag Clin N Am, 2024, 32(1): 47-61. DOI: [46] KHAN N, ADAM R, HUANG P, et al. Deep learning prediction of
10.1016/j.mric.2023.09.001. pathologic complete response in breast cancer using MRI and other
[30] LIANG X H, CHEN X F, YANG Z Q, et al. Early prediction of clinical data: a systematic review[J]. Tomography, 2022, 8(6): 2784-2795.
pathological complete response to neoadjuvant chemotherapy combining DOI: 10.3390/tomography8060232.
DCE-MRI and apparent diffusion coefficient values in breast Cancer[J/OL]. [47] HUANG Y H, ZHU T, ZHANG X L, et al. Longitudinal MRI-based
BMC Cancer, 2022, 22(1): 1250 [2024-03-06]. https://pubmed.ncbi. fusion novel model predicts pathological complete response in breast
nlm.nih.gov/36460972/. DOI: 10.1186/s12885-022-10315-x. cancer treated with neoadjuvant chemotherapy: a multicenter,
[31] DRISIS S, METENS T, IGNATIADIS M, et al. Quantitative DCE-MRI retrospective study[J/OL]. EClinicalMedicine, 2023, 58: 101899
for prediction of pathological complete response following neoadjuvant [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37007742/. DOI: 10.1016/
treatment for locally advanced breast cancer: the impact of breast j.eclinm.2023.101899.
https://www.chinesemri.com ·195 ·