Page 202 - 磁共振成像2024年7期电子刊
P. 202

磁共振成像  2024年7月第15卷第7期  Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7          综   述||Reviews


                  Reson  Imaging,  2020,  52(6)  [2024-03-06].  https://pubmed. ncbi. nlm.  cancer subtypes on the diagnostic accuracy[J]. Eur Radiol, 2016, 26(5):
                  nih.gov/32227407/. DOI: 10.1002/jmri.27145.          1474-1484. DOI: 10.1007/s00330-015-3948-0.
              [14] CABALLO  M,  SANDERINK  W  B  G,  HAN  L  Y,  et  al.   [32] LIU S G, REN R M, CHEN Z Q, et al. Diffusion-weighted imaging in
                  Four-dimensional  machine  learning  radiomics  for  the  pretreatment   assessing  pathological  response  of  tumor  in  breast  cancer  subtype  to
                  assessment  of  breast  cancer  pathologic  complete  response  to  neoadjuvant   neoadjuvant  chemotherapy[J].  J  Magn  Reson  Imaging,  2015,  42(3):
                  chemotherapy  in  dynamic  contrast-enhanced  MRI[J].  J  Magn  Reson   779-787. DOI: 10.1002/jmri.24843.
                  Imaging, 2023, 57(1): 97-110. DOI: 10.1002/jmri.28273.  [33] 王晓, 朱丽钰, 查小明, 等 . 全容积表观扩散系数直方图定量分析术
              [15] NEMETH  A,  CHAUDET  P,  LEPORQ  B,  et  al.  Multicontrast   前预测不同亚型乳腺癌新辅助化疗后病理完全缓解的价值[J]. 中华
                  MRI-based  radiomics  for  the  prediction  of  pathological  complete   放射学杂志, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-2019
                  response  to  neoadjuvant  chemotherapy  in  patients  with  early  triple   0522-00439.
                  negative  breast  cancer[J].  MAGMA,  2021,  34(6):  833-844.  DOI:   WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis
                  10.1007/s10334-021-00941-0.                          of  apparent  diffusion  coefficient  for  the  prediction  of  pathological
              [16] MOHAMED R M, PANTHI B, ADRADA B, et al. Abstract P6-01-06:   complete response to neoadjuvant chemotherapy in different subtypes
                  multi-parametric  MRI-based  radiomics  models  from  tumor  and   of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/
                  peritumoral  regions  as  potential  predictors  of  treatment  response  to   cma.j.cn112149-20190522-00439.
                  neoadjuvant systemic therapy in triple negative breast cancer patients[J/OL].   [34] HE X P, WANG Z S, ZHOU Y, et al. The value, diagnostic efficacy and
                  Cancer Res, 2023 [2024-03-06]. https://www.researchgate.net/publication/  clinical  significance  of  functional  magnetic  resonance  imaging  in
                  368980286_Abstract_P6-01-06_Multi-Parametric_MRI-Based_Radiomics_  evaluating  the  efficacy  of  neoadjuvant  chemotherapy  in  patients  with
                  Models_from_Tumor_and_Peritumoral_Regions_as_Potential_Predictors_  triple  negative  breast  cancer[J/OL].  Front  Oncol,  2023,  13:  1132186
                  of_Treatment_Response_to_Neoadjuvant_Systemic_Therapy_in_Triple_  [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37064088/. DOI: 10.3389/
                  Negative_Breast. DOI: 10.1158/1538-7445.sabcs22-p6-01-06.  fonc.2023.1132186.
              [17] ZHOU  Z  J, ADRADA  B  E,  CANDELARIA  R  P,  et  al.  Prediction  of   [35] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:
                  pathologic complete response to neoadjuvant systemic therapy in triple   extracting  more  information  from  medical  images  using  advanced
                  negative breast cancer using deep learning on multiparametric MRI[J/OL].   feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.
                  Sci Rep, 2023, 13(1): 1171 [2024-03-06]. https://pubmed.ncbi.nlm.nih.  ejca.2011.11.036.
                  gov/36670144/. DOI: 10.1038/s41598-023-27518-2.  [36] ABDEL  RAZEK A A  K, ALKSAS A,  SHEHATA  M,  et  al.  Clinical
              [18] KATAOKA  M,  IIMA  M,  MIYAKE  K  K,  et  al.  Multiparametric   applications of artificial intelligence and radiomics in neuro-oncology
                  approach  to  breast  cancer  with  emphasis  on  magnetic  resonance   imaging[J/OL].  Insights  Imaging,  2021,  12(1):  152  [2024-03-06].  https://
                  imaging  in  the  era  of  personalized  breast  cancer  treatment[J].  Invest   pubmed.ncbi.nlm.nih.gov/34676470/. DOI: 10.1186/s13244-021-01102-6.
                  Radiol, 2024, 59(1): 26-37. DOI: 10.1097/RLI.0000000000001044.  [37] TAGLIAFICO  A  S,  PIANA  M,  SCHENONE  D,  et  al.  Overview  of
              [19] MARINOVICH  M  L,  SARDANELLI  F,  CIATTO  S,  et  al.  Early   radiomics in breast cancer diagnosis and prognostication[J/OL]. Breast,
                  prediction  of  pathologic  response  to  neoadjuvant  therapy  in  breast   2020, 49: 74-80 [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/31739125/.
                  cancer:  systematic  review  of  the  accuracy  of  MRI[J].  Breast,  2012,   DOI: 10.1016/j.breast.2019.10.018.
                  21(5): 669-677. DOI: 10.1016/j.breast.2012.07.006.  [38] BERA K, BRAMAN N, GUPTA A, et al. Predicting cancer outcomes
              [20] EISENHAUER  E  A,  THERASSE  P,  BOGAERTS  J,  et  al.  New   with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin
                  response  evaluation  criteria  in  solid  tumours:  revised  RECIST   Oncol, 2022, 19(2): 132-146. DOI: 10.1038/s41571-021-00560-7.
                  guideline  (version  1.1)[J].  Eur  J  Cancer,  2009,  45(2):  228-247.  DOI:   [39] CORREDOR  G,  BHARADWAJ  S,  PATHAK  T,  et  al.  A  review  of
                  10.1016/j.ejca.2008.10.026.                          AI-based  radiomics  and  computational  pathology  approaches  in
              [21] LOO C E, STRAVER M E, RODENHUIS S, et al. Magnetic resonance   triple-negative  breast  cancer:  current  applications  and  perspectives[J].  Clin
                  imaging  response  monitoring  of  breast  cancer  during  neoadjuvant   Breast Cancer, 2023, 23(8): 800-812. DOI: 10.1016/j.clbc.2023.06.004.
                  chemotherapy:  relevance  of  breast  cancer  subtype[J].  J  Clin  Oncol,   [40] PENG  S  Y,  CHEN  L  Q,  TAO  J,  et  al.  Radiomics  analysis  of
                  2011, 29(6): 660-666. DOI: 10.1200/JCO.2010.31.1258.  multi-phase  DCE-MRI  in  predicting  tumor  response  to  neoadjuvant
              [22] PANTHI B, ADRADA B E, CANDELARIA R P, et al. Assessment of   therapy  in  breast  cancer[J/OL].  Diagnostics,  2021,  11(11):  2086
                  response  to  neoadjuvant  systemic  treatment  in  triple-negative  breast   [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/34829433/. DOI: 10.3390/
                  cancer  using  functional  tumor  volumes  from  longitudinal  dynamic   diagnostics11112086.
                  contrast-enhanced  MRI[J/OL].  Cancers,  2023,  15(4):  1025  [2024-03-06].   [41] LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for
                  https://pubmed.ncbi.nlm.nih.gov/36831368/. DOI: 10.3390/cancers1504  pretreatment  prediction  of  pathologic  complete  response  to  neoadjuvant
                  1025.                                                chemotherapy  in  breast  cancer:  a  multicenter  study[J].  Clin  Cancer  Res,
              [23] PARK  J Y,  KIM Y  S,  LEE  S  E.  Breast  MRI  for  evaluating  residual   2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
                  tumor  size  following  neoadjuvant  chemotherapy:  clinicopathologic  factors   [42] ADRADA  B  E, ABDELHAFEZ A  H,  MUSALL  B  C,  et  al. Abstract
                  and  MRI  imaging  features  affecting  its  accuracy[J].  Curr  Med  Imaging,   P6-02-03: quantitative apparent diffusion coefficient (ADC) radiomics
                  2022, 18(8): 876-882. DOI: 10.2174/1573405617666211117141057.  of  tumor  and  peritumoral  regions  as  potential  predictors  of  treatment
              [24] HYLTON  N  M,  BLUME  J  D,  BERNREUTER  W  K,  et  al.  Locally   response  to  neoadjuvant  chemotherapy  (NACT)  in  triple  negative
                  advanced  breast  cancer:  MR  imaging  for  prediction  of  response  to   breast  cancer  (TNBC)  patients[J/OL].  Cancer  Res,  2020,  80(4_
                  neoadjuvant  chemotherapy:  results  from  ACRIN  6657/I-SPY  TRIAL[J].   Supplement): P6-2-03-P6-02-03 [2024-03-06]. https://www.researchgate.net/
                  Radiology, 2012, 263(3): 663-672. DOI: 10.1148/radiol.12110748.  publication/340217846_Abstract_P6-02-03_Quantitative_apparent_diffusion_
              [25] PARTRIDGE  S  C,  ZHANG  Z,  NEWITT  D  C,  et  al.  Diffusion-weighted   coefficient_ADC_radiomics_of_tumor_and_peritumoral_regions_as_
                  MRI findings predict pathologic response in neoadjuvant treatment of breast   potential_predictors_of_treatment_response_to_neoadjuvant_chemothe
                  cancer:  the  ACRIN  6698  multicenter  trial[J].  Radiology,  2018,  289(3):   rapy_NACT_in_triple_ne. DOI: 10.1158/1538-7445.sabcs19-p6-02-03.
                  618-627. DOI: 10.1148/radiol.2018180273.         [43] HUSSAIN  L,  HUANG  P,  NGUYEN  T,  et  al.  Machine  learning
              [26] LI W, ARASU V, NEWITT D C, et al. Effect of MR imaging contrast   classification of texture features of MRI breast tumor and peri-tumor of
                  thresholds  on  prediction  of  neoadjuvant  chemotherapy  response  in   combined  pre-  and  early  treatment  predicts  pathologic  complete
                  breast cancer subtypes: a subgroup analysis of the ACRIN 6657/I-SPY   response[J/OL].  Biomed  Eng  Online,  2021,  20(1):  63  [2024-03-06].
                  1  TRIAL[J].  Tomography,  2016,  2(4):  378-387.  DOI:  10.18383/j.  https://pubmed.ncbi.nlm.nih.gov/34183038/. DOI: 10.1186/s12938-021-
                  tom.2016.00247.                                      00899-z.
              [27] MUSALL B C, ABDELHAFEZ A H, ADRADA B E, et al. Functional   [44] HACKING S M, WINDSOR G, COOPER R, et al. A novel approach
                  tumor  volume  by  fast  dynamic  contrast-enhanced  MRI  for  predicting   correlating  pathologic  complete  response  with  digital  pathology  and
                  neoadjuvant systemic therapy response in triple-negative breast cancer[J]. J   radiomics  in  triple-negative  breast  cancer[J].  Breast  Cancer,  2024,
                  Magn Reson Imaging, 2021, 54(1): 251-260. DOI: 10.1002/jmri.27557.  31(3): 529-535. DOI: 10.1007/s12282-024-01544-y.
              [28] EOM H J, CHA J H, CHOI W J, et al. Predictive clinicopathologic and   [45] BRAMAN N M, ETESAMI M, PRASANNA P, et al. Intratumoral and
                  dynamic  contrast-enhanced  MRI  findings  for  tumor  response  to   peritumoral  radiomics  for  the  pretreatment  prediction  of  pathological
                  neoadjuvant chemotherapy in triple-negative breast cancer[J/OL]. AJR   complete  response  to  neoadjuvant  chemotherapy  based  on  breast
                  Am  J  Roentgenol,  2017,  208(6):  W225-W230  [2024-03-06].  https://  DCE-MRI[J/OL].  Breast  Cancer  Res,  2017,  19(1):  57  [2024-03-06].
                  pubmed.ncbi.nlm.nih.gov/28350486/. DOI: 10.2214/AJR.16.17125.  https://pubmed.ncbi.nlm.nih.gov/28521821/. DOI: 10.1186/s13058-017-
              [29] LI X, HUANG W, HOLMES J H. Dynamic contrast-enhanced (DCE)   0846-1.
                  MRI[J].  Magn  Reson  Imag  Clin  N  Am,  2024,  32(1):  47-61.  DOI:   [46] KHAN  N, ADAM  R,  HUANG  P,  et  al.  Deep  learning  prediction  of
                  10.1016/j.mric.2023.09.001.                          pathologic  complete  response  in  breast  cancer  using  MRI  and  other
              [30] LIANG  X  H,  CHEN  X  F,  YANG  Z  Q,  et  al.  Early  prediction  of   clinical  data:  a  systematic  review[J]. Tomography,  2022,  8(6):  2784-2795.
                  pathological  complete  response  to  neoadjuvant  chemotherapy  combining   DOI: 10.3390/tomography8060232.
                  DCE-MRI and apparent diffusion coefficient values in breast Cancer[J/OL].   [47] HUANG Y  H,  ZHU T,  ZHANG  X  L,  et  al.  Longitudinal  MRI-based
                  BMC  Cancer,  2022,  22(1):  1250  [2024-03-06].  https://pubmed.ncbi.  fusion  novel  model  predicts  pathological  complete  response  in  breast
                  nlm.nih.gov/36460972/. DOI: 10.1186/s12885-022-10315-x.  cancer  treated  with  neoadjuvant  chemotherapy:  a  multicenter,
              [31] DRISIS S, METENS T, IGNATIADIS M, et al. Quantitative DCE-MRI   retrospective  study[J/OL].  EClinicalMedicine,  2023,  58:  101899
                  for  prediction  of  pathological  complete  response  following  neoadjuvant   [2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/37007742/. DOI: 10.1016/
                  treatment  for  locally  advanced  breast  cancer:  the  impact  of  breast   j.eclinm.2023.101899.

               https://www.chinesemri.com                                                                  ·195 ·
   197   198   199   200   201   202   203   204   205   206   207