Page 209 - 磁共振成像2024年7期电子刊
P. 209

综   述||Reviews                       磁共振成像  2024年7月第15卷第7期  Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7


           良好的应用前景。本文简要论述了 MRI影像组学的                                Radiol, 2022, 32(7): 4845-4856. DOI: 10.1007/s00330-022-08539-3.
                                                               [11] FAN W, SUN W, XU M Z, et al. Diagnosis of benign and malignant
           工作流程以及在乳腺肿瘤中的临床应用,包括鉴别                                  nodules with a radiomics model integrating features from nodules and
                                                                   mammary  regions  on  DCE-MRI[J/OL].  Front  Oncol,  2024,  14:
           良恶性肿瘤、预测乳腺癌分子分型、对 NAC 的反应、                              1307907 [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/38450180/. DOI:
                                                                   10.3389/fonc.2024.1307907.
           ALN 状态、Ki-67 表达、预后评估及复发风险的预测。                       [12] SUN K, JIAO Z C, ZHU H, et al. Radiomics-based machine learning
           乳腺 MP-MRI 可以提供丰富的定量信息,基于乳腺                              analysis  and  characterization  of  breast  lesions  with  multiparametric
                                                                   diffusion-weighted  MR[J/OL].  J  Transl  Med,  2021,  19(1):  443
           MRI 的影像组学在乳腺癌患者的诊断、预测、决策和                               [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/34689804/. DOI: 10.1186/
                                                                   s12967-021-03117-5.
           治疗支持方面将会提供更精准的信息。然而,它仍                              [13] LIU  Y  L,  JIA  X  X,  ZHAO  J  Q,  et  al.  A  machine  learning-based
           处于研究阶段,在临床应用前仍存在许多问题,尤其                                 unenhanced radiomics approach to distinguishing between benign and
                                                                   malignant  breast  lesions  using  T2-weighted  and  diffusion-weighted
           在癌症治疗中的应用还需要一些努力。基因组学和                                  MRI[J/OL].  J  Magn  Reson  Imaging,  2023  [2024-04-01].  https://
                                                                   pubmed.ncbi.nlm.nih.gov/37933890/. DOI: 10.1002/jmri.29111.
           DL 的迅速发展将鼓励影像组学研究人员探索新的                             [14] WANG  G  S,  GUO  Q,  SHI  D  F,  et  al.  Clinical  breast  MRI-based
                                                                   radiomics for distinguishing benign and malignant lesions: an analysis
           可能性,并增强我们对乳腺癌患者的管理能力。未                                  of  sequences  and  enhanced  phases[J/OL].  J  Magn  Reson  Imaging,
           来的放射科医生有望将从乳腺 MP-MRI 中提取的信                              2023 [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/38006286/. DOI:
                                                                   10.1002/jmri.29150.
           息与临床决策联系起来,并为精准医疗建立重要的                              [15] TURNER  K  M, YEO  S  K,  HOLM T  M,  et  al.  Heterogeneity  within
                                                                   molecular subtypes of breast cancer[J/OL]. Am J Physiol Cell Physiol,
           生物标志物。                                                  2021, 321(2): C343-C354 [2024-04-01]. https://pubmed.ncbi.nlm.nih.
                                                                   gov/34191627/. DOI: 10.1152/ajpcell.00109.2021.
               作者利益冲突声明:全体作者均声明无利益冲突。                          [16] HUANG  T,  FAN  B,  QIU  Y  Y,  et  al.  Application  of  DCE-MRI
               作者贡献声明:王毅设计本研究的方案,并对稿                               radiomics  signature  analysis  in  differentiating  molecular  subtypes  of
                                                                   luminal  and  non-luminal  breast  cancer[J/OL].  Front  Med,  2023,  10:
           件重要内容进行了修改;李晓光起草和撰写稿件,获                                 1140514 [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/37181350/. DOI:
                                                                   10.3389/fmed.2023.1140514.
           取、分析和解释本研究的数据;田静、张春来、谢宗玉                            [17] YUE  W  Y,  ZHANG  H  T,  GAO  S,  et  al.  Predicting  breast  cancer
                                                                   subtypes  using  magnetic  resonance  imaging  based  radiomics  with
           构思和设计本研究,获取、分析本研究的数据,对稿                                 automatic segmentation[J]. J Comput Assist Tomogr, 2023, 47(5): 729-737.
                                                                   DOI: 10.1097/RCT.0000000000001474.
           件重要内容进行了修改;王毅获得陆军军医大学临                              [18] ZHANG  L  L,  FAN  M,  WANG  S  W,  et  al.  Radiomic  analysis  of
           床医学研究项目资助,李晓光获得重庆市卫生健康                                  pharmacokinetic heterogeneity within tumor based on the unsupervised
                                                                   decomposition  of  dynamic  contrast-enhanced  MRI  for  predicting
           委医学科研项目资助;全体作者都同意发表最后的                                  histological characteristics of breast cancer[J]. J Magn Reson Imaging,
                                                                   2022, 55(6): 1636-1647. DOI: 10.1002/jmri.27993.
           修改稿,同意对本研究的所有方面负责,确保本研究                             [19] ZHANG  L,  ZHOU  X  X,  LIU  L,  et  al.  Comparison  of  dynamic
           的准确性和诚信。                                                contrast-enhanced  MRI  and  non-mono-exponential  model-based
                                                                   diffusion-weighted imaging for the prediction of prognostic biomarkers
                                                                   and molecular subtypes of breast cancer based on radiomics[J]. J Magn
                                                                   Reson Imaging, 2023, 58(5): 1590-1602. DOI: 10.1002/jmri.28611.
           参考文献[References]                                    [20] ZHOU  J,  TAN  H  N,  LI  W,  et  al.  Radiomics  signatures  based  on
                                                                   multiparametric  MRI  for  the  preoperative  prediction  of  the  HER2
           [1]  WEKKING  D,  PORCU  M,  SILVA  P  D,  et  al.  Breast  MRI:  clinical   status  of  patients  with  breast  cancer[J].  Acad  Radiol,  2021,  28(10):
              indications, recommendations, and future applications in breast cancer   1352-1360. DOI: 10.1016/j.acra.2020.05.040.
              diagnosis[J].  Curr  Oncol  Rep,  2023,  25(4):  257-267.  DOI:  10.1007/  [21] ZHANG W L, LIANG F R, ZHAO Y, et al. Multiparametric MR-based
              s11912-023-01372-x.                                  feature  fusion  radiomics  combined  with  ADC  maps-based  tumor
           [2]  KATAOKA M, IIMA M, MIYAKE K K, et al. Multiparametric imaging   proliferative burden in distinguishing TNBC versus non-TNBC[J/OL].
              of breast cancer: an update of current applications[J]. Diagn Interv Imaging,   Phys Med Biol, 2024, 69(5) [2024-04-01]. https://pubmed.ncbi.nlm.nih.
              2022, 103(12): 574-583. DOI: 10.1016/j.diii.2022.10.012.  gov/38306970/. DOI: 10.1088/1361-6560/ad25c0.
           [3]  GUIOT  J,  VAIDYANATHAN  A,  DEPREZ  L,  et  al.  A  review  in   [22] XU R, YU D, LUO P, et al. Do habitat MRI and fractal analysis help
              radiomics: making personalized medicine a reality via routine imaging  distinguish  triple-negative  breast  cancer  from  non-triple-negative  breast
              [J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.  carcinoma[J/OL]. J L'association Can Des Radiol, 2024: 8465371241231573
           [4]  GILLIES R J, ANDERSON A R, GATENBY R A, et al. The biology   [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/38389194/. DOI: 10.1177/
              underlying  molecular  imaging  in  oncology:  from  genome  to  anatome   08465371241231573.
              and back again[J]. Clin Radiol, 2010, 65(7): 517-521. DOI: 10.1016/j.  [23] VEMURU S, HUANG J, COLBORN K, et al. Clinical implications of
              crad.2010.04.005.                                    receptor  conversions  in  breast  cancer  patients  who  have  undergone
           [5]  LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:   neoadjuvant chemotherapy[J]. Breast Cancer Res Treat, 2023, 200(2):
              extracting  more  information  from  medical  images  using  advanced   247-256. DOI: 10.1007/s10549-023-06978-0.
              feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.  [24] LIU  H  Q,  LIN  S  Y,  SONG  Y  D,  et  al.  Machine  learning  on  MRI
              ejca.2011.11.036.                                    radiomic  features:  identification  of  molecular  subtype  alteration  in
           [6]  ZHAO  X,  BAI  J  W,  GUO  Q,  et  al.  Clinical  applications  of  deep   breast  cancer  after  neoadjuvant  therapy[J].  Eur  Radiol,  2023,  33(4):
              learning  in  breast  MRI[J/OL].  Biochim  Biophys  Acta  Rev  Cancer,   2965-2974. DOI: 10.1007/s00330-022-09264-7.
              2023, 1878(2): 188864 [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/  [25] ZHENG  S  Y,  YANG  Z  H,  DU  G  Z,  et  al.  Discrimination  between
              36822377/. DOI: 10.1016/j.bbcan.2023.188864.         HER2-overexpressing,  -low-expressing,  and  -zero-expressing  statuses
           [7]  ZHANG  X,  SU  G  H,  CHEN  Y,  et  al.  Decoding  Intratumoral   in  breast  cancer  using  multiparametric  MRI-based  radiomics[J/OL].  Eur
              Heterogeneity:  clinical  Potential  of  Habitat  Imaging  based  on   Radiol,  2024  [2024-04-01].  https://pubmed.ncbi.nlm.nih.gov/38363315/.
              Radiomics[J/OL].  Radiology,  2023,  309(3):  e232047  [2024-04-01].   DOI: 10.1007/s00330-024-10641-7.
              https://pubmed.ncbi.nlm.nih.gov/38085080/. DOI: 10.1148/radiol.232047.  [26] YU  Y  M,  WANG  Z  B,  WANG  Q,  et  al.  Radiomic  model  based  on
           [8]  JI Y, LI H, EDWARDS A V, et al. Independent validation of machine   magnetic  resonance  imaging  for  predicting  pathological  complete
              learning  in  diagnosing  breast  Cancer  on  magnetic  resonance  imaging   response  after  neoadjuvant  chemotherapy  in  breast  cancer  patients[J/OL].
              within  a  single  institution[J/OL].  Cancer  Imaging,  2019,  19(1):  64   Front  Oncol,  2023,  13:  1249339  [2024-04-01].  https://pubmed. ncbi.
              [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/36991474/. DOI: 10.1186/  nlm.nih.gov/38357424/. DOI: 10.3389/fonc.2023.1249339.
              s40644-019-0252-2.                               [27] LI  Q,  XIAO  Q,  LI  J  W,  et  al.  Value  of  machine  learning  with
           [9]  DEBBI K, HABERT P, GROB A, et al. Radiomics model to classify   multiphases  CE-MRI  radiomics  for  early  prediction  of  pathological
              mammary  masses  using  breast  DCE-MRI  compared  to  the  BI-RADS   complete response to neoadjuvant therapy in HER2-positive invasive breast
              classification  performance[J/OL].  Insights  Imaging,  2023,  14(1):  64   cancer[J/OL]. Cancer Manag Res, 2021, 13: 5053-5062 [2024-04-01]. https:
              [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/37052738/. DOI: 10.1186/  //pubmed.ncbi.nlm.nih.gov/34234550/. DOI: 10.2147/CMAR.S304547.
              s13244-023-01404-x.                              [28] PARK  J,  KIM  M  J,  YOON  J  H,  et  al.  Machine  learning  predicts
           [10] XU  H,  LIU  J  K,  CHEN  Z,  et  al.  Intratumoral  and  peritumoral   pathologic  complete  response  to  neoadjuvant  chemotherapy  for  ER+
              radiomics  based  on  dynamic  contrast-enhanced  MRI  for  preoperative   HER2-  breast  cancer:  integrating  tumoral  and  peritumoral  MRI
              prediction  of  intraductal  component  in  invasive  breast  cancer[J].  Eur   radiomic  features[J/OL].  Diagnostics,  2023,  13(19):  3031  [2024-04-01].

          ·202 ·                                                                      https://www.chinesemri.com
   204   205   206   207   208   209   210   211   212   213   214