Page 210 - 磁共振成像2024年7期电子刊
P. 210

磁共振成像  2024年7月第15卷第7期  Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7          综   述||Reviews


                  https://pubmed.ncbi.nlm.nih.gov/37835774/. DOI: 10.3390/diagnostics  axillary  lymph  node  metastasis  in  patients  with  breast  cancer[J].  Acad
                  13193031.                                            Radiol, 2024, 31(3): 788-799. DOI: 10.1016/j.acra.2023.10.026.
              [29] 徐海敏, 戴瑶, 马雨竹, 等 . MRT1WI 瘤体及瘤周影像组学联合临床          [43] ZHANG  B  Y,  YU  Y  M,  MAO  Y,  et  al.  Development  of  MRI-based
                  特征预测乳腺癌新辅助化疗疗效[J]. 中国医学影像技术, 2023,                   deep learning signature for prediction of axillary response after NAC in
                  39(10): 1520-1525. DOI: 10.13929/j.issn.1003-3289.2023.10.016.  breast  cancer[J]. Acad  Radiol,  2024,  31(3):  800-811.  DOI:  10.1016/j.
                  XU H M, DAI Y, MA Y Z, et al. MR T1WI intratumoral and peritumoral   acra.2023.10.004.
                  radiomics  combined  with  clinical  features  for  predicting  effect  of   [44] 张丽, 黄小华, 沈梦伊, 等 . 基于不同机器学习算法的影像组学模型
                  neoadjuvant chemotherapy for breast cancer[J]. Chin J Med Imag Technol,   预测浸润性乳腺癌 Ki-67 表达的价值[J]. 中国医学计算机成像杂志,
                  2023, 39(10): 1520-1525. DOI: 10.13929/j.issn.1003-3289.2023.10.016.  2024, 30(1): 39-44. DOI: 10.19627/j.cnki.cn31-1700/th.2024.01.016.
              [30] ZHENG  G  Y,  PENG  J  X,  SHU  Z  Y,  et  al.  Predicting  pathological   ZHANG L, HUANG X H, SHEN M Y, et al. The value of radiomics
                  complete  response  to  neoadjuvant  chemotherapy  in  breast  cancer   models  based  on  different  machine  learning  in  predicting  ki-67
                  patients: use of MRI radiomics data from three regions with multiple   expression in invasive breast cancer[J]. Chin Comput Med Imag, 2024,
                  machine  learning  algorithms[J/OL].  J  Cancer  Res  Clin  Oncol,  2024,   30(1): 39-44. DOI: 10.19627/j.cnki.cn31-1700/th.2024.01.016.
                  150(3): 147 [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/38512406/.   [45] 明洁, 陈莹, 刘莹, 等 . 基于 DCE-MRI瘤内联合瘤周影像组学模型术
                  DOI: 10.1007/s00432-024-05680-y.                     前预测乳腺癌 Ki-67 表达状态的价值[J]. 磁共振成像, 2022, 13(10):
              [31] GUO L C, DU S Y, GAO S, et al. Delta-radiomics based on dynamic   132-137, 149. DOI: 10.12015/issn.1674-8034.2022.10.020.
                  contrast-enhanced MRI predicts pathologic complete response in breast   MING J, CHEN Y, LIU Y, et al. Value of preoperative prediction of Ki-67
                  cancer patients treated with neoadjuvant chemotherapy[J/OL]. Cancers,   expression in breast cancer based on DCE-MRI intratumoral combined with
                  2022,  14(14):  3515  [2024-04-01].  https://pubmed.ncbi.nlm.nih.gov/  peritumoral  radiomics  model[J].  Chin  J  Magn  Reson  Imag,  2022,  13(10):
                  35884576/. DOI: 10.3390/cancers14143515.             132-137, 149. DOI: 10.12015/issn.1674-8034.2022.10.020.
              [32] 余雅丽, 王晓, 查小明, 等 . 基线 ADC 图全容积 ROI 影像组学模型预       [46] 刘晓东, 王新宇, 宁刚 . MRI 影像组学术前预测乳腺浸润性导管癌
                  测肿块样乳腺癌新辅助化疗后获得病理完全缓解的价值[J]. 放射学                     Ki-67 表 达 [J].  中 国 医 学 影 像 技 术 ,  2022,  38(2):  210-214.  DOI:
                  实践, 2022, 37(8): 987-994. DOI: 10.13609/j.cnki.1000-0313.2022.08.012.  10.13929/j.issn.1003-3289.2022.02.012.
                  YU Y  L, WANG  X,  ZHA  X  M,  et  al. Whole  volume  ROI  radiomics   LIU  X  D,  WANG  X  Y,  NING  G.  MRI  radiomics  for  preoperative
                  analysis of mass-like breast cancer based on pretreatment ADC images   predicting  Ki-67  expression  of  breast  invasive  ductal  carcinoma[J].
                  for  the  prediction  of  pathological  complete  response  to  neoadjuvant   Chin  J  Med  Imag  Technol,  2022,  38(2):  210-214.  DOI:  10.13929/j.
                  chemotherapy[J]. Radiol Pract, 2022, 37(8): 987-994. DOI: 10.13609/j.  issn.1003-3289.2022.02.012.
                  cnki.1000-0313.2022.08.012.                      [47] FENG  S  Q,  YIN  J  D.  Radiomics  of  dynamic  contrast-enhanced
              [33] SHI Z W, HUANG X M, CHENG Z L, et al. MRI-based quantification   magnetic  resonance  imaging  parametric  maps  and  apparent  diffusion
                  of  intratumoral  heterogeneity  for  predicting  treatment  response  to   coefficient maps to predict Ki-67 status in breast cancer[J/OL]. Front
                  neoadjuvant  chemotherapy  in  breast  cancer[J/OL].  Radiology,  2023,   Oncol,  2022,  12:  847880  [2024-04-01].  https://pubmed. ncbi. nlm. nih.
                  308(1): e222830 [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/37432083/.   gov/36895526/. DOI: 10.3389/fonc.2022.847880.
                  DOI: 10.1148/radiol.222830.                      [48] ZHANG  L,  SHEN  M  Y,  ZHANG  D  Y,  et  al.  Radiomics  nomogram
              [34] HWANG K P, ELSHAFEEY N A, KOTROTSOU A, et al. A radiomics   based  on  dual-sequence  MRI  for  assessing  ki-67  expression  in  breast
                  model based on synthetic MRI acquisition for predicting neoadjuvant   cancer[J/OL].  J  Magn  Reson  Imaging,  2023  [2024-04-01].  https://
                  systemic  treatment  response  in  triple-negative  breast  cancer[J/OL].   pubmed.ncbi.nlm.nih.gov/38088478/. DOI: 10.1002/jmri.29149.
                  Radiol  Imaging  Cancer,  2023,  5(4):  e230009  [2024-04-01].  https://  [49] TABNAK  P,  HAJIESMAILPOOR  Z,  BARADARAN  B,  et  al.
                  pubmed.ncbi.nlm.nih.gov/37505106/. DOI: 10.1148/rycan.230009.  MRI-based radiomics methods for predicting ki-67 expression in breast
              [35] 王贇霞, 尚怡研, 郭亚欣, 等 . DCE-MRI 影像组学特征在预测乳腺癌             cancer: a systematic review and meta-analysis[J]. Acad Radiol, 2024,
                  腋窝淋巴结转移中的价值[J]. 磁共振成像, 2023, 14(3): 21-27. DOI:      31(3): 763-787. DOI: 10.1016/j.acra.2023.10.010.
                  10.12015/issn.1674-8034.2023.03.005.             [50] MA  M  M,  GAN  L  Y,  LIU  Y  H,  et  al.  Radiomics  features  based  on
                  WANG Y X, SHANG Y Y, GUO Y X, et al. Value of DCE-MRI based   automatic  segmented  MRI  images:  prognostic  biomarkers  for
                  radiomics features for prediction of axillary lymph node metastasis in   triple-negative breast cancer treated with neoadjuvant chemotherapy[J/OL].
                  breast  carcinoma[J].  Chin  J  Magn  Reson  Imag,  2023,  14(3):  21-27.   Eur J Radiol, 2022, 146: 110095 [2024-04-01]. https://pubmed.ncbi.nlm.nih.
                  DOI: 10.12015/issn.1674-8034.2023.03.005.            gov/34890936/. DOI: 10.1016/j.ejrad.2021.110095.
              [36] LI  L, YU T,  SUN  J  Q,  et  al.  Prediction  of  the  number  of  metastatic   [51] LEE  J,  KIM  S  H,  KIM Y,  et  al.  Radiomics  nomogram:  prediction  of
                  axillary lymph nodes in breast cancer by radiomic signature based on   2-year disease-free survival in young age breast cancer[J/OL]. Cancers,
                  dynamic  contrast-enhanced  MRI[J]. Acta  Radiol,  2022,  63(8):  1014-1022.   2022,  14(18):  4461  [2024-04-01].  https://pubmed. ncbi. nlm. nih. gov/
                  DOI: 10.1177/02841851211025857.                      36139620/. DOI: 10.3390/cancers14184461.
              [37] 赵楠楠, 朱芸, 汤晓敏, 等 . 基于瘤内及瘤周 MRI 影像组学列线图预          [52] CHO  H  H,  KIM  H,  NAM  S  Y,  et  al.  Measurement  of  perfusion
                  测乳腺癌腋窝淋巴结转移[J]. 磁共振成像, 2023, 14(3): 81-87, 94.       heterogeneity  within  tumor  habitats  on  magnetic  resonance  imaging
                  DOI: 10.12015/issn.1674-8034.2023.03.014.            and  its  association  with  prognosis  in  breast  cancer  patients[J/OL].
                  ZHAO N N, ZHU Y, TANG X M, et al. Prediction of axillary lymph   Cancers, 2022, 14(8): 1858 [2024-04-01]. https://pubmed.ncbi.nlm.nih.
                  node  metastasis  in  breast  cancer  based  on  intra-tumoral  and  peri-tumoral   gov/35454768/. DOI: 10.3390/cancers14081858.
                  MRI  radiomics  nomogram[J].  Chin  J  Magn  Reson  Imag,  2023,  14(3):   [53] PARK G E, KIM S H, LEE E B, et al. Ipsilateral recurrence of DCIS in
                  81-87, 94. DOI: 10.12015/issn.1674-8034.2023.03.014.  relation  to  radiomics  features  on  contrast  enhanced  breast  MRI[J].
              [38] ZHAN C N, HU Y Q, WANG X R, et al. Prediction of Axillary Lymph   Tomography, 2022, 8(2): 596-606. DOI: 10.3390/tomography8020049.
                  Node  Metastasis  in  Breast  Cancer  using  Intra-peritumoral  Textural   [54] YU  Y  F,  REN  W,  HE  Z  F,  et  al.  Machine  learning  radiomics  of
                  Transition  Analysis  based  on  Dynamic  Contrast-enhanced  Magnetic   magnetic  resonance  imaging  predicts  recurrence-free  survival  after
                  Resonance  Imaging[J/OL].  Acad  Radiol,  2022,  29(Suppl  1):  S107-S115   surgery and correlation of LncRNAs in patients with breast cancer: a
                  [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/33712393/. DOI: 10.1016/  multicenter  cohort  study[J/OL].  Breast  Cancer  Res,  2023,  25(1):  132
                  j.acra.2021.02.008.                                  [2024-04-01]. https://pubmed.ncbi.nlm.nih.gov/37915093/. DOI: 10.1186/
              [39] LIN  G  H,  CHEN  W  Y,  FAN  Y  Y,  et  al.  Machine  learning   s13058-023-01688-3.
                  radiomics-based  prediction  of  non-sentinel  lymph  node  metastasis  in   [55] 崔雅静, 范明, 厉力华 . DCE-MRI 影像联合临床信息预测乳腺癌复
                  Chinese breast cancer patients with 1-2 positive sentinel lymph nodes:   发风险评分[J]. 杭州电子科技大学学报(自然科学版), 2022, 42(1):
                  a  multicenter  study[J/OL].  Acad  Radiol,  2024:  S1076-S6332(24)  67-73. DOI: 10.13954/j.cnki.hdu.2022.01.011.
                  00080-1  [2024-04-01].  https://pubmed. ncbi. nlm. nih. gov/38490840/.  DOI:   CUI Y  J,  FAN  M,  LI  L  H.  Prediction  of  Oncotype  DX  RS  in  breast
                  10.1016/j.acra.2024.02.010.                          cancer  by  integrating  of  DCE-MRI  radiomics  and  clinicopathologic
              [40] HARAGUCHI  T,  KOBAYASHI  Y,  HIRAHARA  D,  et  al.  Radiomics   data[J].  J  Hangzhou  Dianzi  Univ  Nat  Sci,  2022,  42(1):  67-73.  DOI:
                  model  of  diffusion-weighted  whole-body  imaging  with  background   10.13954/j.cnki.hdu.2022.01.011.
                  signal suppression (DWIBS) for predicting axillary lymph node status   [56] CHEN  Y,  TANG  W,  LIU  W,  et  al.  Multiparametric  MR  imaging
                  in  breast  cancer[J].  J  Xray  Sci  Technol,  2023,  31(3):  627-640.  DOI:   radiomics  signatures  for  assessing  the  recurrence  risk  of  ER+/HER2-
                  10.3233/XST-230009.                                  breast  cancer  quantified  with  21-gene  recurrence  score[J].  J  Magn
              [41] SONG  S  E,  WOO  O  H,  CHO Y,  et  al.  Prediction  of  axillary  lymph   Reson Imaging, 2023, 58(2): 444-453. DOI: 10.1002/jmri.28547.
                  node  metastasis  in  early-stage  triple-negative  breast  cancer  using   [57] PAQUIER  Z,  CHAO  S  L, ACQUISTO A,  et  al.  Radiomics  software
                  multiparametric  and  radiomic  features  of  breast  MRI[J/OL].  Acad   comparison  using  digital  phantom  and  patient  data:  IBSI-compliance
                  Radiol, 2023, 30(Suppl 2): S25-S37 [2024-04-01]. https://pubmed.ncbi.  does not guarantee concordance of feature values[J/OL]. Biomed Phys
                  nlm.nih.gov/37331865/. DOI: 10.1016/j.acra.2023.05.025.  Eng  Express,  2022,  8(6)  [2024-04-01].  https://pubmed. ncbi. nlm. nih.
              [42] CHEN Y S, LI J P, ZHANG J, et al. Radiomic nomogram for predicting   gov/36049399/. DOI: 10.1088/2057-1976/ac8e6f.







               https://www.chinesemri.com                                                                  ·203 ·
   205   206   207   208   209   210   211   212   213   214   215