Page 233 - 磁共振成像2024年7期电子刊
P. 233

综   述||Reviews                       磁共振成像  2024年7月第15卷第7期  Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7


              YÜ,  X  Y,  WU  H,  NIU  G  M,  et  al.  Multiparameter  MRI  radiomics   platinum  resistance  in  ovarian  cancer  treatment[J/OL].  Biomedecine
              predicts  preoperative  peritoneal  metastasis  in  patients  with  epithelial   Pharmacother, 2021, 133: 111013 [2024-06-15]. https://linkinghub.elsevier.
              ovarian cancer[J]. Chin J Magn Reson Imag, 2021, 12(8): 44-48. DOI:   com/retrieve/pii/S0753-3322(20)31205-1. DOI: 10.1016/j.biopha.2020.
              10.12015/issn.1674-8034.2021.08.009.                 111013.
           [24] SONG  X  L,  REN  J  L,  YAO  T  Y,  et  al.  Radiomics  based  on   [41] LEI  R  L, YU Y  F,  LI  Q  J,  et  al.  Deep  learning  magnetic  resonance
              multisequence magnetic resonance imaging for the preoperative prediction   imaging predicts platinum sensitivity in patients with epithelial ovarian
              of  peritoneal  metastasis  in  ovarian  cancer[J].  Eur  Radiol,  2021,  31(11):   cancer[J/OL].  Front  Oncol,  2022,  12:  895177  [2024-06-15].  https://www.
              8438-8446. DOI: 10.1007/s00330-021-08004-7.          frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.895177/full.
           [25] WEI  M  X,  ZHANG  Y,  DING  C,  et  al.  Associating  peritoneal   DOI: 10.3389/fonc.2022.895177.
              metastasis with T2-weighted MRI images in epithelial ovarian cancer   [42] CALVO  E,  SESSA  C,  HARADA  G,  et  al.  Phase  I  study  of
              using  deep  learning  and  radiomics:  a  multicenter  study[J].  J  Magn   lurbinectedin  in  combination  with  weekly  paclitaxel  with  or  without
              Reson Imaging, 2024, 59(1): 122-131. DOI: 10.1002/jmri.28761.  bevacizumab  in  patients  with  advanced  solid  tumors[J].  Invest  New
           [26] LI  J  J,  ZHANG  J  N,  WANG  F,  et  al.  CT-based  radiomics  for  the   Drugs, 2022, 40(6): 1263-1273. DOI: 10.1007/s10637-022-01281-z.
              preoperative  prediction  of  occult  peritoneal  metastasis  in  epithelial   [43] MAI J, WU L M, YANG L, et al. Therapeutic strategies targeting folate
              ovarian cancers[J]. Acad Radiol, 2024, 31(5): 1918-1930. DOI: 10.1016/  receptor  α  for  ovarian  cancer[J/OL].  Front  Immunol,  2023,  14:
              j.acra.2023.11.032.                                  1254532  [2024-06-15].  https://www. frontiersin. org/articles/10.3389/
           [27] CHEN  H  Z,  WANG  X  R,  ZHAO  F  M,  et  al.  The  development  and   fimmu.2023.1254532/full. DOI: 10.3389/fimmu.2023.1254532.
              validation of a CT-based radiomics nomogram to preoperatively predict   [44] QIU  D  M,  CAI W  Q,  ZHANG  Z  Q,  et  al.  High  Ki-67  expression  is
              lymph  node  metastasis  in  high-grade  serous  ovarian  cancer[J/OL].  Front   significantly associated with poor prognosis of ovarian cancer patients:
              Oncol,  2021,  11:  711648  [2024-06-15].  https://pubmed. ncbi. nlm. nih.  evidence from a meta-analysis[J]. Arch Gynecol Obstet, 2019, 299(5):
              gov/34532289/. DOI: 10.3389/fonc.2021.711648.        1415-1427. DOI: 10.1007/s00404-019-05082-3.
           [28] QI  Y,  LIU  J  C,  WANG  X  Y,  et  al.  Development  and  validation  of  an   [45] WANG  X  H,  XU  C,  GRZEGORZEK  M,  et  al.  Habitat  radiomics
              ultrasound‑based  radiomics  nomogram  to  predict  lymph  node  status  in   analysis  of  pet/ct  imaging  in  high-grade  serous  ovarian  cancer:
              patients with high-grade serous ovarian cancer: a retrospective analysis [J/OL].   application to Ki-67 status and progression-free survival[J/OL]. Front
              J Ovarian Res, 2024, 17(1): 48 [2024-06-15]. https://pubmed.ncbi.nlm.  Physiol,  2022,  13:  948767  [2024-06-15].  https://www. frontiersin. org/
              nih.gov/38389075/. DOI: 10.1186/s13048-024-01375-7.  articles/10.3389/fphys.2022.948767/full. DOI: 10.3389/fphys.2022.948767.
           [29] LENG  Y  P,  KAN  A,  WANG  X  W,  et  al.  Contrast-enhanced  CT   [46] GU R, TAN S Y, XU Y P, et al. CT radiomics prediction of CXCL9
              radiomics  for  preoperative  prediction  of  stage  in  epithelial  ovarian   expression and survival in ovarian cancer[J/OL]. J Ovarian Res, 2023,
              cancer:  a  multicenter  study[J/OL].  BMC  Cancer,  2024,  24(1):  307   16(1):  180  [2024-06-15].  https://ovarianresearch. biomedcentral. com/
              [2024-06-15]. https://pubmed.ncbi.nlm.nih.gov/38448945/. DOI: 10.1186/  articles/10.1186/s13048-023-01248-5. DOI: 10.1186/s13048-023-01248-5.
              s12885-024-12037-8.                              [47] XU  W  T,  ZHU  C  Y,  JI  D,  et  al.  CT-based  radiomics  prediction  of
           [30] LU J J, CAI S Q, WANG F, et al. Development of a prediction model   CXCL13  expression  in  ovarian  cancer[J].  Med  Phys,  2023,  50(11):
              for  gross  residual  in  high-grade  serous  ovarian  cancer  by  combining   6801-6814. DOI: 10.1002/mp.16730.
              preoperative  assessments  of  abdominal  and  pelvic  metastases  and   [48] WAN  S,  ZHOU  T  F,  CHE  R  H,  et  al.  CT-based  machine  learning
              multiparametric  MRI[J]. Acad  Radiol,  2023,  30(9):  1823-1831.  DOI:   radiomics  predicts  CCR5  expression  level  and  survival  in  ovarian
              10.1016/j.acra.2022.12.019.                          cancer[J/OL].  J  Ovarian  Res,  2023,  16(1):  1  [2024-06-15].  https://
           [31] AI Y, ZHANG J D, JIN J B, et al. Preoperative prediction of metastasis for   ovarianresearch. biomedcentral. com/articles/10.1186/s13048-022-01089-8.
              ovarian  cancer  based  on  computed  tomography  radiomics  features  and   DOI: 10.1186/s13048-022-01089-8.
              clinical factors[J/OL]. Front Oncol, 2021, 11: 610742 [2024-06-15]. https://  [49] LU H N, ARSHAD M, THORNTON A, et al. A mathematical-descriptor
              pubmed.ncbi.nlm.nih.gov/34178617/. DOI: 10.3389/fonc.2021.610742.  of  tumor-mesoscopic-structure  from  computed-tomography  images
           [32] RUNDO  L,  BEER  L,  ESCUDERO  SANCHEZ  L,  et  al.  Clinically   annotates  prognostic-  and  molecular-phenotypes  of  epithelial  ovarian
              interpretable radiomics-based prediction of histopathologic response to   cancer[J/OL].  Nat  Commun,  2019,  10(1):  764  [2024-06-15]. https://
              neoadjuvant  chemotherapy  in  high-grade  serous  ovarian  carcinoma[J/OL].   www.nature.com/articles/s41467-019-08718-9. DOI: 10.1038/s41467-019-
              Front Oncol, 2022, 12: 868265 [2024-06-15]. https://www.frontiersin.  08718-9.
              org/journals/oncology/articles/10.3389/fonc.2022.868265/full. DOI: 10.3389/  [50] FOTOPOULOU C, ROCKALL A, LU H N, et al. Validation analysis
              fonc.2022.868265.                                    of  the  novel  imaging-based  prognostic  radiomic  signature  in  patients
           [33] CRISPIN-ORTUZAR  M,  WOITEK  R,  REINIUS  M  A  V,  et  al.   undergoing  primary  surgery  for  advanced  high-grade  serous  ovarian
              Integrated  radiogenomics  models  predict  response  to  neoadjuvant   cancer  (HGSOC) [J].  Br  J  Cancer,  2022,  126(7):  1047-1054.  DOI:
              chemotherapy  in  high  grade  serous  ovarian  cancer[J/OL].  Nat  Commun,   10.1038/s41416-021-01662-w.
              2023, 14(1): 6756 [2024-06-15]. https://www.nature.com/articles/s41467-  [51] LU H N, LOU H T, WENGERT G, et al. Tumor and local lymphoid
              023-41820-7. DOI: 10.1038/s41467-023-41820-7.        tissue  interaction  determines  prognosis  in  high-grade  serous  ovarian
           [34] ZHANG K, ABDOLI N, GILLEY P, et al. Developing a novel image   cancer[J/OL]. Cell Rep Med, 2023, 4(7): 101092 [2024-06-15]. https://
              marker  to  predict  the  clinical  outcome  of  neoadjuvant  chemotherapy   www. ncbi. nlm. nih. gov/pmc/articles/PMC10394173/.  DOI:  10.1016/j.
              (NACT)  for  ovarian  cancer  patients[J/OL].  Comput  Biol  Med,  2024,   xcrm.2023.101092.
              172: 108240 [2024-06-15]. https://www.sciencedirect.com/science/article/  [52] RIZZO  S,  BOTTA  F,  RAIMONDI  S,  et  al.  Radiomics  of  high-grade
              abs/pii/S001048252400324X?via%3Dihub. DOI: 10.1016/j.compbiomed.  serous  ovarian  cancer:  association  between  quantitative  CT  features,
              2024.108240.                                         residual  tumour  and  disease  progression  within  12  months[J].  Eur
           [35] LI Y A, JIAN J M, GE H J, et al. Peritumoral MRI radiomics features   Radiol, 2018, 28(11): 4849-4859. DOI: 10.1007/s00330-018-5389-z.
              increase  the  evaluation  efficiency  for  response  to  chemotherapy  in   [53] CHEN  H  Z,  WANG  X  R,  ZHAO  F  M,  et  al. A  CT-based  radiomics
              patients with epithelial ovarian cancer[J/OL]. J Magn Reson Imaging,   nomogram for predicting early recurrence in patients with high-grade
              2024 [2024-06-15]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.29359.   serous  ovarian  cancer[J/OL].  Eur  J  Radiol,  2021,  145:  110018
              DOI: 10.1002/jmri.29359.                             [2024-06-15]. https://www.sciencedirect.com/science/article/abs/pii/S07
           [36] VEERARAGHAVAN  H, VARGAS  H A,  JIMENEZ-SANCHEZ A,  et  al.   20048X2100499X?via%3Dihub. DOI: 10.1016/j.ejrad.2021.110018.
              Integrated multi-tumor radio-genomic marker of outcomes in patients with   [54] ZHANG H, MAO Y F, CHEN X J, et al. Magnetic resonance imaging
              high  serous  ovarian  carcinoma[J/OL].  Cancers,  2020,  12(11):  3403   radiomics  in  categorizing  ovarian  masses  and  predicting  clinical
              [2024-06-15]. https://www.mdpi.com/2072-6694/12/11/3403. DOI: 10.3390/  outcome: a preliminary study[J]. Eur Radiol, 2019, 29(7): 3358-3371.
              cancers12113403.                                     DOI: 10.1007/s00330-019-06124-9.
           [37] MAO  M  M,  LI  H  M,  SHI  J,  et  al.  Prediction  of  platinum-based   [55] WANG  T  P,  WANG  H  J,  WANG  Y  D,  et  al.  MR-based
              chemotherapy  sensitivity  for  epithelial  ovarian  cancer  by  multi-sequence   radiomics-clinical  nomogram  in  epithelial  ovarian  tumor  prognosis
              MRI-based  radiomic  nomogram[J].  Zhonghua  Yi  Xue  Za  Zhi,  2022,   prediction:  tumor  body  texture  analysis  across  various  acquisition
              102(3): 201-208. DOI: 10.3760/cma.j.cn112137-20210816-01844.  protocols[J/OL].  J  Ovarian  Res,  2022,  15(1):  6  [2024-06-15].  https://
           [38] LI H M, CAI S Q, DENG L, et al. Prediction of platinum resistance for   ovarianresearch.biomedcentral.com/articles/10.1186/s13048-021-00941-7.
              advanced  high-grade  serous  ovarian  carcinoma  using  MRI-based   DOI: 10.1186/s13048-021-00941-7.
              radiomics  nomogram[J].  Eur  Radiol,  2023,  33(8):  5298-5308.  DOI:   [56] YE  L,  ZHANG  Y,  YANG  X  Y,  et  al. An  ovarian  cancer  susceptible
              10.1007/s00330-023-09552-w.                          gene prediction method based on deep learning methods[J/OL]. Front
           [39] BI  Q,  MIAO  K,  XU  N,  et  al.  Habitat  radiomics  based  on  MRI  for   Cell Dev Biol, 2021, 9: 730475 [2024-06-15]. https://www.frontiersin.
              predicting  platinum  resistance  in  patients  with  high-grade  serous   org/articles/10.3389/fcell.2021.730475/full. DOI: 10.3389/fcell.2021.730475.
              ovarian  carcinoma:  a  MulticenterStudy[J]. Acad  Radiol,  2024,  31(6):   [57] AGHAYOUSEFI  R,  HOSSEINIYAN  KHATIBI  S  M,  ZUNUNI
              2367-2380. DOI: 10.1016/j.acra.2023.11.038.          VAHED S, et al. A diagnostic miRNA panel to detect recurrence of ovarian
           [40] YI  X  P,  LIU  Y  Z,  ZHOU  B  L,  et  al.  Incorporating  SULF1   cancer  through  artificial  intelligence  approaches[J].  J  Cancer  Res  Clin
              polymorphisms  in  a  pretreatment  CT-based  radiomic  model  for  predicting   Oncol, 2023, 149(1): 325-341. DOI: 10.1007/s00432-022-04468-2.





          ·226 ·                                                                      https://www.chinesemri.com
   228   229   230   231   232   233   234   235   236   237   238