Page 58 - 磁共振成像2024年7期电子刊
P. 58

磁共振成像  2024年7月第15卷第7期  Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7   临床研究||Clinical Articles


              基于默认网络内部功能连接能预测抑郁症

              患者睡眠障碍因子分

                            1, 2
              秦姣龙   1, 2* ,李弘瑄 ,吴烨 ,倪黄晶   3*
                                  1, 2
              作者单位  1. 南京理工大学计算机科学与工程学院,高维信息智能感知与系统教育部重点实验室,南京 210014;2. 南京理工大学
              计算机科学与工程学院,社会安全图像与视频理解江苏省重点实验室,南京 210014;3.南京邮电大学计算机学院、软件学院、网络
              空间安全学院,南京 210023
              * 通信作者  倪黄晶,E-mail: nihuangjing@njupt.edu.cn;秦姣龙,E-mail: jiaolongq@njust.edu.cn
              中图分类号  R445.2;R749.1  文献标识码  A  DOI  10.12015/issn.1674-8034.2024.07.009
              本文引用格式  秦姣龙, 李弘瑄, 吴烨, 等 . 基于默认网络内部功能连接能预测抑郁症患者睡眠障碍因子分[J]. 磁共振成像, 2024,
              15(7): 51-57.

              [摘要]  目的 探究抑郁症 (major depression disorder, MDD) 患者大脑默认网络 (default mode network, DMN) 功能连接
             (functional connectivity, FC)能否预测其睡眠障碍因子分。材料与方法 基于 REST-meta-MDD 公开数据集中满足本实验需求的
              326 例 MDD 被试静息态功能磁共振成像数据。采用 Power 模板在全脑中定义了 264 个脑区节点,分别获取患者的 DMN 内部 FC
              和 DMN与其他网络间的外部 FC。采用基于连接组的预测模型在发现数据集上分别基于 DMN内部和 DMN外部 FC对 MDD患者
              的睡眠障碍因子分进行回归预测,独立验证集上检验模型的稳定性。结果 在 DMN 内部 FC,发现数据集对 MDD 患者的睡眠
              障碍因子分具有一定的预测性(r=0.244,P<0.001),外部独立验证集也有很好的泛化预测效果(r=0.345,P=0.046)。DMN 外
              部 FC 在发现数据集上对其可进行预测(r=0.238,P<0.001),而独立验证集其泛化性能不足(r=0.256,P=0.143)。结论 DMN
              内部FC对MDD患者睡眠障碍因子分具有一定的预测性。
              [关键词]  抑郁症;睡眠障碍;默认网络;静息态功能磁共振成像;磁共振成像
              Functional connectivity within the default mode network can predict the sleep disturbance scores
              of the patients with depression

                                             1, 2
                                     1, 2
              QIN Jiaolong 1, 2* , LI Hongxuan , WU Ye , NI Huangjing 3*
              1 Key  Lab  of  Intelligent  Perception  and  Systems  for  High-Dimensional  Information  of  Ministry  of  Education,  School  of  Computer
                                                                                      2
              Science and Engineering, Nanjing University of Science and Technology, Nanjing 210014, China;  Jiangsu Key Lab of Image and Video
              Understanding  for  Social  Security,  School  of  Computer  Science  and  Engineering,  Nanjing  University  of  Science  and  Technology,
              Nanjing 210014, China;  School of Computer Science, School of Software, School of Cyberspace Security, Nanjing University of Posts
                                3
              and Telecommunications, Nanjing 210023, China
              * Correspondence to  NI H J, E-mail: nihuangjing@njupt.edu.cn; QIN J L, E-mail: jiaolongq@njust.edu.cn
              Received  19 Jan 2024, Accepted  6 Jun 2024; DOI  10.12015/issn.1674-8034.2024.07.009
              ACKNOWLEDGMENTS   National  Natural  Science  Foundation  of  China  (No.  62201265,  81701346);  Natural  Science  of  Jiangsu
              Province (No. BK20190736).
              Cite  this  article  as   QIN  J  L,  LI  H  X, WU Y,  et  al.  Functional  connectivity  within  the  default  mode  network  can  predict  the  sleep
              disturbance scores of the patients with depression[J]. Chin J Magn Reson Imaging, 2024, 15(7): 51-57.
              Abstract  Objective: To explore whether the functional connectivity (FC) of the default mode network (DMN) can predict the sleep
              disturbance  scores  of  the  patients  with  major  depressive  disorder  (MDD).  Materials  and  Methods:  The  resting  functional  magnetic
              resonance imaging data of 326 patients with MDD from the REST-meta-MDD project were included after undergoing rigorous selection
              based on the experimental criteria. The entire brain was defined into 256 regions based on the Power template, followed by separate
              extraction  of  the  FC  of  the  intra-  and  inter-  DMN.  Connectome-based  predictive  modeling  was  employed  to  regress  individual  sleep
              disturbance  score  using  both  types  of  FC  feature,  and  the  experimental  findings  would  be  subsequently  validated  on  an  external
              independent validation dataset. Results: The predictive model based on the intra-FC of the DMN demonstrated significant prediction
              capability for sleep disturbance scores in individuals with depression, not only in the discovery dataset (r=0.244, P<0.001), but also in the
              external validation dataset (r=0.345, P=0.046). However, models based on the inter-FC of the DMN exhibited limited prediction ability
              and can only predict the scores in the discovery dataset (r=0.238, P<0.001), failing to generalize to the external validation dataset (r=
              0.256, P=0.143). Conclusions: The intra-FC of DMN demonstrates predictive capability for the sleep disturbance scores in patients with
              MDD in some extent.
              Key  words   depression;  sleep  disturbance;  default  mode  network;  resting-state  functional  magnetic  resonance  imaging;  magnetic
              resonance imaging



              0 引言                                                 首次发现 MDD 患者有着更短的快速眼动睡眠潜伏
                  睡 眠 障 碍 是 抑 郁 症(major depressive disorder,       期。睡眠障碍与 MDD 的病因和发病机制密切相
              MDD)最常见的临床核心症状之一 。KUPFER 等                    [2]    关 ,也是 MDD 患者疾病复发或自杀的风险因素                    [4-5] 。
                                              [1]
                                                                     [3]
              收稿日期  2024-01-19  接受日期  2024-06-06
              基金项目  国家自然科学基金项目(编号:62201265、81701346);江苏省自然科学基金项目(编号:BK20190736)

               https://www.chinesemri.com                                                                   ·51 ·
   53   54   55   56   57   58   59   60   61   62   63