Page 222 - 磁共振成像2024年7期电子刊
P. 222
磁共振成像 2024年7月第15卷第7期 Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7 综 述||Reviews
incoherent motion and diffusion kurtosis imaging in the assessment of 885-893. DOI: 10.1002/jmri.26254.
tumor regression grade and T stages after neoadjuvant chemoradiotherapy [51] YEO D M, OH S N, CHOI M H, et al. Histogram analysis of perfusion
in patients with locally advanced rectal cancer[J/OL]. Eur J Radiol, parameters from dynamic contrast-enhanced MR imaging with tumor
2021, 136: 109504 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2020.109504. characteristics and therapeutic response in locally advanced rectal
DOI: 10.1016/j.ejrad.2020.109504. cancer[J/OL]. Biomed Res Int, 2018, 2018: 3724393 [2024-06-10].
[45] LI D D, CUI Y F, HOU L N, et al. Diffusion kurtosis imaging-derived https://doi.org/10.1155/2018/3724393. DOI: 10.1155/2018/3724393.
histogram metrics for prediction of resistance to neoadjuvant [52] PHAM T T, LINEY G, WONG K, et al. Multi-parametric magnetic
chemoradiotherapy in rectal adenocarcinoma: preliminary findings[J/OL]. resonance imaging assessment of whole tumour heterogeneity for
Eur J Radiol, 2021, 144: 109963 [2024-06-10]. https://doi.org/10.1016/ chemoradiotherapy response prediction in rectal cancer[J]. Phys Imaging
j.ejrad.2021.109963. DOI: 10.1016/j.ejrad.2021.109963. Radiat Oncol, 2021, 18: 26-33. DOI: 10.1016/j.phro.2021.03.003.
[46] BATES D D B, MAZAHERI Y, LOBAUGH S, et al. Evaluation of [53] 林凯, 罗凡, 王智文 . DCE-MRI 定量和半定量分析对结直肠良恶性
diffusion kurtosis and diffusivity from baseline staging MRI as 肿瘤的鉴别诊断价值[J]. 放射学实践, 2023, 38(5): 587-592. DOI:
predictive biomarkers for response to neoadjuvant chemoradiation in 10.13609/j.cnki.1000-0313.2023.05.010.
locally advanced rectal cancer[J]. Abdom Radiol, 2019, 44(11): LIN K, LUO F, WANG Z W. Value of DCE-MRI quantitative and
3701-3708. DOI: 10.1007/s00261-019-02073-5. semi-quantitative analysis in the differential diagnosis of benign and
[47] 刘晓冬, 刘爱连, 李烨, 等 . DCE-MRI 及 IVIM 模型在直肠癌病理分 malignant colorectal tumors[J]. Radiol Pract, 2023, 38(5): 587-592.
级中的应用及其灌注参数的相关性[J]. 中国医学影像学杂志, 2020, DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
28(4): 256-259, 268. DOI: 10.3969/j.issn.1005-5185.2020.04.004. [54] BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in
LIU X D, LIU A L, LI Y, et al. Application of dynamic cancer imaging: clinical challenges and applications[J]. CA Cancer J
contrast-enhanced magnetic resonance imaging and intravoxel Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552.
incoherent motion model in pathological grading of rectal cancer and [55] 朱钰, 欧阳治强, 单海燕, 等 . 基于 MRI 的人工智能在直肠癌中的
correlation of perfusion parameters[J]. Chin J Med Imag, 2020, 28(4): 应 用 进 展 [J]. 磁 共 振 成 像 , 2023, 14(9): 176-180. DOI: 10.12015/
256-259, 268. DOI: 10.3969/j.issn.1005-5185.2020.04.004. issn.1674-8034.2023.09.032.
[48] 王楠, 王丽君 . 体素内不相干运动和动态对比增强 MRI 在预测鼻咽 ZHU Y, OUYANG Z Q, SHAN H Y, et al. Application progress of MRI
癌放疗疗效的研究进展[J]. 磁共振成像, 2023, 14(12): 161-165. DOI: based artificial intelligence in rectal cancer[J]. Chin J Magn Reson Imag,
10.12015/issn.1674-8034.2023.12.029. 2023, 14(9): 176-180. DOI: 10.12015/issn.1674-8034.2023.09.032.
WANG N, WANG L J. Research progress of intravoxel incoherent [56] ZHANG X Y, WANG L, ZHU H T, et al. Predicting rectal cancer
motion and dynamic contrast-enhanced MRI in radiotherapy response response to neoadjuvant chemoradiotherapy using deep learning of
prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag, diffusion kurtosis MRI[J]. Radiology, 2020, 296(1): 56-64. DOI:
2023, 14(12): 161-165. DOI: 10.12015/issn.1674-8034.2023.12.029. 10.1148/radiol.2020190936.
[49] CIOLINA M, CARUSO D, DE SANTIS D, et al. Dynamic [57] SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic
contrast-enhanced magnetic resonance imaging in locally advanced complete response of rectal cancer following chemoradiotherapy[J].
rectal cancer: role of perfusion parameters in the assessment of response to Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
treatment[J]. Radiol Med, 2019, 124(5): 331-338. DOI: 10.1007/s11547- [58] WANG J, CHEN J J, ZHOU R Z, et al. Machine learning-based
018-0978-0. multiparametric MRI radiomics for predicting poor responders after
[50] ZOU H H, YU J, WEI Y, et al. Response to neoadjuvant chemoradiotherapy neoadjuvant chemoradiotherapy in rectal Cancer patients[J/OL]. BMC
for locally advanced rectum cancer: texture analysis of dynamic Cancer, 2022, 22(1): 420 [2024-06-10]. http://pubumed. ncbi. nlm. nih.
contrast-enhanced MRI[J]. J Magn Reson Imaging, 2019, 49(3): gov/35439946/. DOI: 10.1186/s12885-022-09518-z.
(上接第190页)
[48] ARAI A E, SCHULZ-MENGER J, SHAH D J, et al. Stress perfusion 10.3760/cma.j.cn112149-20230926-00237.
cardiac magnetic resonance vs SPECT imaging for detection of [58] FERREIRA V M, PLEIN S, WONG T C, et al. Cardiovascular magnetic
coronary artery disease[J]. J Am Coll Cardiol, 2023, 82(19): 1828-1838. resonance for evaluation of cardiac involvement in COVID-19:
DOI: 10.1016/j.jacc.2023.08.046. recommendations by the Society for Cardiovascular Magnetic
[49] RICCI F, KHANJI M Y, BISACCIA G, et al. Diagnostic and Resonance[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1): 21
prognostic value of stress cardiovascular magnetic resonance imaging [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/36973744/. DOI: 10.1186/
in patients with known or suspected coronary artery disease: a s12968-023-00933-0.
systematic review and meta-analysis[J]. JAMA Cardiol, 2023, 8(7): [59] VIDULA M K, RAJEWSKA-TABOR J, CAO J J, et al. Myocardial
662-673. DOI: 10.1001/jamacardio.2023.1290. injury on CMR in patients with COVID-19 and suspected cardiac
[50] ZHAO S H, GUO W F, YAO Z F, et al. Fully automated pixel-wise involvement[J]. JACC Cardiovasc Imaging, 2023, 16(5): 609-624.
quantitative CMR-myocardial perfusion with CMR-coronary angiography DOI: 10.1016/j.jcmg.2022.10.021.
to detect hemodynamically significant coronary artery disease[J]. Eur [60] ARTICO J, SHIWANI H, MOON J C, et al. Myocardial involvement
Radiol, 2023, 33(10): 7238-7249. DOI: 10.1007/s00330-023-09689-8. after hospitalization for COVID-19 complicated by troponin elevation:
[51] BAWASKAR P, THOMAS N, ISMAIL K, et al. Nonischemic or dual a prospective, multicenter, observational study[J]. Circulation, 2023,
cardiomyopathy in patients with coronary artery disease[J]. Circulation, 147(5): 364-374. DOI: 10.1161/CIRCULATIONAHA.122.060632.
2024, 149(11): 807-821. DOI: 10.1161/CIRCULATIONAHA.123.067032. [61] AJMONE MARSAN N, DELGADO V, SHAH D J, et al. Valvular
[52] JONES R E, ZAIDI H A, HAMMERSLEY D J, et al. Comprehensive heart disease: shifting the focus to the myocardium[J]. Eur Heart J,
phenotypic characterization of late gadolinium enhancement predicts 2023, 44(1): 28-40. DOI: 10.1093/eurheartj/ehac504.
sudden cardiac death in coronary artery disease[J]. JACC Cardiovasc [62] MALAHFJI M, CRUDO V, KAOLAWANICH Y, et al. Influence of
Imaging, 2023, 16(5): 628-638. DOI: 10.1016/j.jcmg.2022.10.020. cardiac remodeling on clinical outcomes in patients with
[53] LIANG K T, BISACCIA G, LEO I, et al. CMR reclassifies the majority of AorticRegurgitation[J]. J Am Coll Cardiol, 2023, 81(19): 1885-1898.
patients with suspected MINOCA and non MINOCA[J]. Eur Heart J DOI: 10.1016/j.jacc.2023.03.001.
Cardiovasc Imaging, 2023, 25(1): 8-15. DOI: 10.1093/ehjci/jead182. [63] GUGLIELMO M, ARANGALAGE D, BONINO M A, et al.
[54] MILEVA N, PAOLISSO P, GALLINORO E, et al. Diagnostic and Additional value of cardiac magnetic resonance feature tracking
prognostic role of cardiac magnetic resonance in MINOCA: systematic parameters for the evaluation of the arrhythmic risk in patients with
review and meta-analysis[J]. JACC Cardiovasc Imaging, 2023, 16(3): mitral valve prolapse[J/OL]. J Cardiovasc Magn Reson, 2023, 25(1):
376-389. DOI: 10.1016/j.jcmg.2022.12.029. 32 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37316826/. DOI: 10.1186/
[55] BELTRAME J F. Comprehensive diagnostic assessmentin MINOCA[J]. JACC s12968-023-00944-x.
Cardiovasc Imag, 2023, 16(4): 533-535. DOI: 10.1016/j.jcmg.2022.12.018. [64] WANG T K M, KOCYIGIT D, CHOI H, et al. Prognostic power of
[56] BERGAMASCHI L, FOÀ A, PAOLISSO P, et al. Prognostic role of quantitative assessment of functional mitral regurgitation and myocardial
early cardiac magnetic resonance in myocardial infarction with scar quantification by cardiac magnetic resonance[J/OL]. Circ Cardiovasc
nonobstructive CoronaryArteries[J]. JACC Cardiovasc Imaging, 2024, Imaging, 2023, 16(8): e015134 [2024-03-14]. https://pubmed.ncbi.nlm.nih.
17(2): 149-161. DOI: 10.1016/j.jcmg.2023.05.016. gov/37503633/. DOI: 10.1161/CIRCIMAGING.122.015134.
[57] 李静惠, 赵世华, 陆敏杰 . 新型冠状病毒感染相关心肌损伤 MRI 表 [65] REINDL M, LECHNER I, HOLZKNECHT M, et al. Cardiac magnetic
现[J]. 中华放射学杂志, 2023, 57(12): 1378-1382. DOI: 10.3760/cma.j. resonance imaging versus computed tomography to guide transcatheter
cn112149-20230926-00237. aortic valve replacement: a randomized, open-label, noninferiority trial[J].
LI J H, ZHAO S H, LU M J. MR characteristics of myocardial injury Circulation, 2023, 148(16): 1220-1230. DOI: 10.1161/CIRCULATIONAHA.
in COVID-19[J]. Chin J Radiol, 2023, 57(12): 1378-1382. DOI: 123.066498.
https://www.chinesemri.com ·215 ·