Page 222 - 磁共振成像2024年7期电子刊
P. 222

磁共振成像  2024年7月第15卷第7期  Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7          综   述||Reviews


                  incoherent motion and diffusion kurtosis imaging in the assessment of   885-893. DOI: 10.1002/jmri.26254.
                  tumor  regression  grade  and T  stages  after  neoadjuvant  chemoradiotherapy   [51] YEO D M, OH S N, CHOI M H, et al. Histogram analysis of perfusion
                  in  patients  with  locally  advanced  rectal  cancer[J/OL].  Eur  J  Radiol,   parameters  from  dynamic  contrast-enhanced  MR  imaging  with  tumor
                  2021, 136: 109504 [2024-06-10]. https://doi.org/10.1016/j.ejrad.2020.109504.   characteristics  and  therapeutic  response  in  locally  advanced  rectal
                  DOI: 10.1016/j.ejrad.2020.109504.                    cancer[J/OL].  Biomed  Res  Int,  2018,  2018:  3724393  [2024-06-10].
              [45] LI D D, CUI Y F, HOU L N, et al. Diffusion kurtosis imaging-derived   https://doi.org/10.1155/2018/3724393. DOI: 10.1155/2018/3724393.
                  histogram  metrics  for  prediction  of  resistance  to  neoadjuvant   [52] PHAM  T  T,  LINEY  G,  WONG  K,  et  al.  Multi-parametric  magnetic
                  chemoradiotherapy  in  rectal  adenocarcinoma:  preliminary  findings[J/OL].   resonance  imaging  assessment  of  whole  tumour  heterogeneity  for
                  Eur J Radiol, 2021, 144: 109963 [2024-06-10]. https://doi.org/10.1016/  chemoradiotherapy  response  prediction  in  rectal  cancer[J].  Phys  Imaging
                  j.ejrad.2021.109963. DOI: 10.1016/j.ejrad.2021.109963.  Radiat Oncol, 2021, 18: 26-33. DOI: 10.1016/j.phro.2021.03.003.
              [46] BATES  D  D  B,  MAZAHERI  Y,  LOBAUGH  S,  et  al.  Evaluation  of   [53] 林凯, 罗凡, 王智文 . DCE-MRI 定量和半定量分析对结直肠良恶性
                  diffusion  kurtosis  and  diffusivity  from  baseline  staging  MRI  as   肿瘤的鉴别诊断价值[J]. 放射学实践, 2023, 38(5): 587-592. DOI:
                  predictive  biomarkers  for  response  to  neoadjuvant  chemoradiation  in   10.13609/j.cnki.1000-0313.2023.05.010.
                  locally  advanced  rectal  cancer[J].  Abdom  Radiol,  2019,  44(11):   LIN  K,  LUO  F,  WANG  Z  W.  Value  of  DCE-MRI  quantitative  and
                  3701-3708. DOI: 10.1007/s00261-019-02073-5.          semi-quantitative  analysis  in  the  differential  diagnosis  of  benign  and
              [47] 刘晓冬, 刘爱连, 李烨, 等 . DCE-MRI 及 IVIM 模型在直肠癌病理分          malignant  colorectal  tumors[J].  Radiol  Pract,  2023,  38(5):  587-592.
                  级中的应用及其灌注参数的相关性[J]. 中国医学影像学杂志, 2020,                 DOI: 10.13609/j.cnki.1000-0313.2023.05.010.
                  28(4): 256-259, 268. DOI: 10.3969/j.issn.1005-5185.2020.04.004.  [54] BI W L, HOSNY A, SCHABATH M B, et al. Artificial intelligence in
                  LIU  X  D,  LIU  A  L,  LI  Y,  et  al.  Application  of  dynamic   cancer  imaging:  clinical  challenges  and  applications[J].  CA  Cancer  J
                  contrast-enhanced  magnetic  resonance  imaging  and  intravoxel   Clin, 2019, 69(2): 127-157. DOI: 10.3322/caac.21552.
                  incoherent motion model in pathological grading of rectal cancer and   [55] 朱钰, 欧阳治强, 单海燕, 等 . 基于 MRI 的人工智能在直肠癌中的
                  correlation of perfusion parameters[J]. Chin J Med Imag, 2020, 28(4):   应 用 进 展 [J].  磁 共 振 成 像 ,  2023,  14(9):  176-180.  DOI:  10.12015/
                  256-259, 268. DOI: 10.3969/j.issn.1005-5185.2020.04.004.  issn.1674-8034.2023.09.032.
              [48] 王楠, 王丽君 . 体素内不相干运动和动态对比增强 MRI 在预测鼻咽                 ZHU Y, OUYANG Z Q, SHAN H Y, et al. Application progress of MRI
                  癌放疗疗效的研究进展[J]. 磁共振成像, 2023, 14(12): 161-165. DOI:    based  artificial  intelligence  in  rectal  cancer[J].  Chin  J  Magn  Reson  Imag,
                  10.12015/issn.1674-8034.2023.12.029.                 2023, 14(9): 176-180. DOI: 10.12015/issn.1674-8034.2023.09.032.
                  WANG  N,  WANG  L  J.  Research  progress  of  intravoxel  incoherent   [56] ZHANG  X  Y,  WANG  L,  ZHU  H  T,  et  al.  Predicting  rectal  cancer
                  motion and dynamic contrast-enhanced MRI in radiotherapy response   response  to  neoadjuvant  chemoradiotherapy  using  deep  learning  of
                  prediction of nasopharyngeal carcinoma[J]. Chin J Magn Reson Imag,   diffusion  kurtosis  MRI[J].  Radiology,  2020,  296(1):  56-64.  DOI:
                  2023, 14(12): 161-165. DOI: 10.12015/issn.1674-8034.2023.12.029.  10.1148/radiol.2020190936.
              [49] CIOLINA  M,  CARUSO  D,  DE  SANTIS  D,  et  al.  Dynamic   [57] SHIN J, SEO N, BAEK S E, et al. MRI radiomics model predicts pathologic
                  contrast-enhanced  magnetic  resonance  imaging  in  locally  advanced   complete  response  of  rectal  cancer  following  chemoradiotherapy[J].
                  rectal cancer: role of perfusion parameters in the assessment of response to   Radiology, 2022, 303(2): 351-358. DOI: 10.1148/radiol.211986.
                  treatment[J]. Radiol Med, 2019, 124(5): 331-338. DOI: 10.1007/s11547-  [58] WANG  J,  CHEN  J  J,  ZHOU  R  Z,  et  al.  Machine  learning-based
                  018-0978-0.                                          multiparametric  MRI  radiomics  for  predicting  poor  responders  after
              [50] ZOU H H, YU J, WEI Y, et al. Response to neoadjuvant chemoradiotherapy   neoadjuvant chemoradiotherapy in rectal Cancer patients[J/OL]. BMC
                  for  locally  advanced  rectum  cancer:  texture  analysis  of  dynamic   Cancer,  2022,  22(1):  420  [2024-06-10].  http://pubumed. ncbi. nlm. nih.
                  contrast-enhanced  MRI[J].  J  Magn  Reson  Imaging,  2019,  49(3):   gov/35439946/. DOI: 10.1186/s12885-022-09518-z.






             (上接第190页)

              [48] ARAI A E, SCHULZ-MENGER J, SHAH D J, et al. Stress perfusion   10.3760/cma.j.cn112149-20230926-00237.
                  cardiac  magnetic  resonance  vs  SPECT  imaging  for  detection  of   [58] FERREIRA V M, PLEIN S, WONG T C, et al. Cardiovascular magnetic
                  coronary  artery  disease[J].  J  Am  Coll  Cardiol,  2023,  82(19):  1828-1838.   resonance  for  evaluation  of  cardiac  involvement  in  COVID-19:
                  DOI: 10.1016/j.jacc.2023.08.046.                     recommendations  by  the  Society  for  Cardiovascular  Magnetic
              [49] RICCI  F,  KHANJI  M  Y,  BISACCIA  G,  et  al.  Diagnostic  and   Resonance[J/OL].  J  Cardiovasc  Magn  Reson,  2023,  25(1):  21
                  prognostic value of stress cardiovascular magnetic resonance imaging   [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/36973744/. DOI: 10.1186/
                  in  patients  with  known  or  suspected  coronary  artery  disease:  a   s12968-023-00933-0.
                  systematic  review  and  meta-analysis[J].  JAMA  Cardiol,  2023,  8(7):   [59] VIDULA  M  K,  RAJEWSKA-TABOR  J,  CAO  J  J,  et  al.  Myocardial
                  662-673. DOI: 10.1001/jamacardio.2023.1290.          injury  on  CMR  in  patients  with  COVID-19  and  suspected  cardiac
              [50] ZHAO  S  H,  GUO W  F, YAO  Z  F,  et  al.  Fully  automated  pixel-wise   involvement[J].  JACC  Cardiovasc  Imaging,  2023,  16(5):  609-624.
                  quantitative  CMR-myocardial  perfusion  with  CMR-coronary  angiography   DOI: 10.1016/j.jcmg.2022.10.021.
                  to  detect  hemodynamically  significant  coronary  artery  disease[J].  Eur   [60] ARTICO J, SHIWANI H, MOON J C, et al. Myocardial involvement
                  Radiol, 2023, 33(10): 7238-7249. DOI: 10.1007/s00330-023-09689-8.  after hospitalization for COVID-19 complicated by troponin elevation:
              [51] BAWASKAR P, THOMAS N, ISMAIL K, et al. Nonischemic or dual   a  prospective,  multicenter,  observational  study[J].  Circulation,  2023,
                  cardiomyopathy in patients with coronary artery disease[J]. Circulation,   147(5): 364-374. DOI: 10.1161/CIRCULATIONAHA.122.060632.
                  2024, 149(11): 807-821. DOI: 10.1161/CIRCULATIONAHA.123.067032.  [61] AJMONE  MARSAN  N,  DELGADO  V,  SHAH  D  J,  et  al.  Valvular
              [52] JONES R E, ZAIDI H A, HAMMERSLEY D J, et al. Comprehensive   heart  disease:  shifting  the  focus  to  the  myocardium[J].  Eur  Heart  J,
                  phenotypic  characterization  of  late  gadolinium  enhancement  predicts   2023, 44(1): 28-40. DOI: 10.1093/eurheartj/ehac504.
                  sudden  cardiac  death  in  coronary  artery  disease[J].  JACC  Cardiovasc   [62] MALAHFJI  M,  CRUDO  V,  KAOLAWANICH  Y,  et  al.  Influence  of
                  Imaging, 2023, 16(5): 628-638. DOI: 10.1016/j.jcmg.2022.10.020.  cardiac  remodeling  on  clinical  outcomes  in  patients  with
              [53] LIANG K T, BISACCIA G, LEO I, et al. CMR reclassifies the majority of   AorticRegurgitation[J].  J Am  Coll  Cardiol,  2023,  81(19):  1885-1898.
                  patients  with  suspected  MINOCA  and  non  MINOCA[J].  Eur  Heart  J   DOI: 10.1016/j.jacc.2023.03.001.
                  Cardiovasc Imaging, 2023, 25(1): 8-15. DOI: 10.1093/ehjci/jead182.  [63] GUGLIELMO  M,  ARANGALAGE  D,  BONINO  M  A,  et  al.
              [54] MILEVA  N,  PAOLISSO  P,  GALLINORO  E,  et  al.  Diagnostic  and   Additional  value  of  cardiac  magnetic  resonance  feature  tracking
                  prognostic role of cardiac magnetic resonance in MINOCA: systematic   parameters  for  the  evaluation  of  the  arrhythmic  risk  in  patients  with
                  review and meta-analysis[J]. JACC Cardiovasc Imaging, 2023, 16(3):   mitral  valve  prolapse[J/OL].  J  Cardiovasc  Magn  Reson,  2023,  25(1):
                  376-389. DOI: 10.1016/j.jcmg.2022.12.029.            32 [2024-03-14]. https://pubmed.ncbi.nlm.nih.gov/37316826/. DOI: 10.1186/
              [55] BELTRAME J F. Comprehensive diagnostic assessmentin MINOCA[J]. JACC   s12968-023-00944-x.
                  Cardiovasc Imag, 2023, 16(4): 533-535. DOI: 10.1016/j.jcmg.2022.12.018.  [64] WANG  T  K  M,  KOCYIGIT  D,  CHOI  H,  et  al.  Prognostic  power  of
              [56] BERGAMASCHI  L,  FOÀ A,  PAOLISSO  P,  et  al.  Prognostic  role  of   quantitative  assessment  of  functional  mitral  regurgitation  and  myocardial
                  early  cardiac  magnetic  resonance  in  myocardial  infarction  with   scar  quantification  by  cardiac  magnetic  resonance[J/OL].  Circ  Cardiovasc
                  nonobstructive CoronaryArteries[J]. JACC Cardiovasc Imaging, 2024,   Imaging, 2023, 16(8): e015134 [2024-03-14]. https://pubmed.ncbi.nlm.nih.
                  17(2): 149-161. DOI: 10.1016/j.jcmg.2023.05.016.     gov/37503633/. DOI: 10.1161/CIRCIMAGING.122.015134.
              [57] 李静惠, 赵世华, 陆敏杰 . 新型冠状病毒感染相关心肌损伤 MRI 表            [65] REINDL M, LECHNER I, HOLZKNECHT M, et al. Cardiac magnetic
                  现[J]. 中华放射学杂志, 2023, 57(12): 1378-1382. DOI: 10.3760/cma.j.  resonance imaging versus computed tomography to guide transcatheter
                  cn112149-20230926-00237.                             aortic  valve  replacement:  a  randomized,  open-label,  noninferiority  trial[J].
                  LI J H, ZHAO S H, LU M J. MR characteristics of myocardial injury   Circulation, 2023, 148(16): 1220-1230. DOI: 10.1161/CIRCULATIONAHA.
                  in  COVID-19[J].  Chin  J  Radiol,  2023,  57(12):  1378-1382.  DOI:   123.066498.

               https://www.chinesemri.com                                                                  ·215 ·
   217   218   219   220   221   222   223   224   225   226   227