Page 118 - 磁共振成像2024年7期电子刊
P. 118

磁共振成像  2024年7月第15卷第7期  Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7   临床研究||Clinical Articles


                  14163  [2024-03-18].  https://pubmed. ncbi. nlm. nih. gov/32843663/.  DOI:   imaging  and  dynamic  contrast  enhanced  MRI  in  prediction  of  prognostic
                  10.1038/s41598-020-70940-z.                          factors and molecular subtypes in patients with breast cancer[J/OL]. Eur J
               [7]  王秀红, 陈皇, 宋志刚, 等 . 基于乳腺病理组织学的 HER2 智能预              Radiol, 2022, 154: 110392 [2024-03-18]. https://pubmed.ncbi.nlm.nih.
                  测[J]. 中华病理学杂志, 2021, 50(4): 344-348. DOI: 10.3760/cma.j.  gov/35679701/. DOI: 10.1016/j.ejrad.2022.110392.
                  cn112151-20200721-00581.                         [24] JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis
                  WANG  X  H,  CHEN  H,  SONG  Z  G,  et  al.  Intelligent  prediction  of   imaging: the quantification of non-gaussian water diffusion by means
                  HER2  status  based  on  breast  histopathology[J].  Chin  J  Pathol,  2021,   of  magnetic  resonance  imaging[J].  Magn  Reson  Med,  2005,  53(6):
                  50(4): 344-348. DOI: 10.3760/cma.j.cn112151-20200721-00581.  1432-1440. DOI: 10.1002/mrm.20508.
               [8]  李周丽, 陈基明, 高静, 等 . MRI 影像组学模型术前预测乳腺癌人表          [25] 周洋, 徐鹏举 . 扩散峰度成像(DKI)在体部应用的研究进展[J]. 复旦
                  皮生长因子受体 2 表达状态的价值[J]. 磁共振成像, 2023, 14(4):            学报(医学版), 2018, 45(6): 911-915, 920. DOI: 10.3969/j.issn.1672-8467.
                  82-88. DOI: 10.12015/issn.1674-8034.2023.04.014.     2018.06.027.
                  LI Z L, CHEN J M, GAO J, et al. Value of MRI image omics model in   ZHOU  Y,  XU  P  J.  Research  progress  on  body  diffusion  kurtosis
                  preoperative  prediction  of  human  epidermal  growth  factor  receptor  2   imaging(DKI)[J]. Fudan Univ J Med Sci, 2018, 45(6): 911-915, 920.
                  expression in breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(4):   DOI: 10.3969/j.issn.1672-8467.2018.06.027.
                  82-88. DOI: 10.12015/issn.1674-8034.2023.04.014.  [26] ZHOU  W  P,  ZAN  X  Y,  HU  X  Y,  et  al.  Characterization  of  breast
               [9]  LI  Q,  XIAO  Q,  LI  J  W,  et  al.  Value  of  machine  learning  with   lesions  using  diffusion  kurtosis  model-based  imaging:  an  initial
                  multiphases  CE-MRI  radiomics  for  early  prediction  of  pathological   experience[J]. J Xray Sci Technol, 2020, 28(1): 157-169. DOI: 10.3233/
                  complete  response  to  neoadjuvant  therapy  in  HER2-positive  invasive   XST-190590.
                  breast  cancer[J/OL].  Cancer  Manag  Res,  2021,  13:  5053-5062   [27] MENG N, WANG X J, SUN J, et al. A comparative study of the value
                  [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/34234550/. DOI: 10.2147/  of  amide  proton  transfer-weighted  imaging  and  diffusion  kurtosis
                  CMAR.S304547.                                        imaging in the diagnosis and evaluation of breast cancer[J]. Eur Radiol,
              [10] KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of   2021, 31(3): 1707-1717. DOI: 10.1007/s00330-020-07169-x.
                  invasive  breast  cancer:  correlations  with  prognostic  factors  and   [28] 王婷, 李文武 . 体素内不相干运动联合扩散峰度成像对乳腺癌
                  molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120.   HER-2表达的判断价值[J]. 医学影像学杂志, 2022, 32(1): 46-50.
                  DOI: 10.1002/jmri.27999.                             WANG  T,  LI  W  W.  Prediction  of  the  expression  of  HER-2in  breast
              [11] DU  S  Y,  GAO  S,  ZHANG  L  N,  et  al.  Improved  discrimination  of   cancer  based  on  intravoxel  incoherent  motion  and  diffusion  kurtosis
                  molecular  subtypes  in  invasive  breast  cancer:  comparison  of  multiple   imaging[J]. J Med Imag, 2022, 32(1): 46-50.
                  quantitative parameters from breast MRI[J/OL]. Magn Reson Imaging,   [29] 王铭, 田为中 . 体素内不相干运动扩散加权成像在乳腺癌中的临床
                  2021, 77: 148-158 [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/33309922/.   应用进展[J]. 临床放射学杂志, 2021, 40(2): 401-404. DOI: 10.13437/
                  DOI: 10.1016/j.mri.2020.12.001.                      j.cnki.jcr.2021.02.044.
              [12] HUANG Y, LIN Y, HU W, et al. Diffusion Kurtosis at 3.0T as an in   WANG  M,  TIAN  W  Z.  Progress  in  clinical  application  of  intra-voxel
                  vivo  Imaging  Marker  for  Breast  Cancer  Characterization:  correlation   incoherent  motion  diffusion  weighted  imaging  in  breast  cancer[J].  J  Clin
                  With  Prognostic  Factors[J].  J  Magn  Reson  Imaging,  2019,  49(3):   Radiol, 2021, 40(2): 401-404. DOI: 10.13437/j.cnki.jcr.2021.02.044.
                  845-856. DOI: 10.1002/jmri.26249.                [30] VIDIĆ I, EGNELL L, JEROME N P, et al. Support vector machine for
              [13] LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics   breast  cancer  classification  using  diffusion-weighted  MRI  histogram
                  based  on  functional  parametric  maps  from  breast  DCE-MRI  for   features:  preliminary  study[J].  J  Magn  Reson  Imaging,  2018,  47(5):
                  prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021,   1205-1216. DOI: 10.1002/jmri.25873.
                  54(3): 703-714. DOI: 10.1002/jmri.27651.         [31] ZHAO  M,  FU  K,  ZHANG  L,  et  al.  Intravoxel  incoherent  motion
              [14] ZHOU  J,  TAN  H  N,  LI  W,  et  al.  Radiomics  signatures  based  on   magnetic  resonance  imaging  for  breast  cancer:  a  comparison  with
                  multiparametric  MRI  for  the  preoperative  prediction  of  the  HER2   benign  lesions  and  evaluation  of  heterogeneity  in  different  tumor
                  status  of  patients  with  breast  cancer[J].  Acad  Radiol,  2021,  28(10):   regions  with  prognostic  factors  and  molecular  classification[J].  Oncol
                  1352-1360. DOI: 10.1016/j.acra.2020.05.040.          Lett, 2018, 16(4): 5100-5112. DOI: 10.3892/ol.2018.9312.
              [15] GUIOT  J,  VAIDYANATHAN  A,  DEPREZ  L,  et  al.  A  review  in   [32] 王伟康, 林桂涵, 陈春妙, 等 . 基于 MRI 动态增强扫描瘤内联合瘤周
                  radiomics: making personalized medicine a reality via routine imaging  影像组学列线图术前预测乳腺癌 HER-2状态的价值[J]. 中国中西医
                  [J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.  结合影像学杂志, 2023, 21(3): 259-264. DOI: 10.3969/j.issn.1672-0512.
              [16] ZHANG Q, PENG Y S, LIU W, et al. Radiomics based on multimodal   2023.03.006.
                  MRI  for  the  differential  diagnosis  of  benign  and  malignant  breast   WANG W K, LIN G H, CHEN C M, et al. Value of dynamic enhanced
                  lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607. DOI: 10.1002/  intratumoral  MRI  combined  with  a  peritumoral  radiomics  nomogram
                  jmri.27098.                                          in  preoperatively  predicting  HER-2  status  of  breast  cancer[J].  Chin
              [17] FENG  W,  GAO  Y,  LU  X  R,  et  al.  Correlation  between  molecular   Imag J Integr Tradit West Med, 2023, 21(3): 259-264. DOI: 10.3969/j.
                  prognostic  factors  and  magnetic  resonance  imaging  intravoxel   issn.1672-0512.2023.03.006.
                  incoherent motion histogram parameters in breast cancer[J/OL]. Magn   [33] BICKELHAUPT  S,  LAUN  F  B,  TESDORFF  J,  et  al.  Fast  and
                  Reson Imaging, 2022, 85: 262-270 [2024-03-18]. https://pubmed.ncbi.  noninvasive  characterization  of  suspicious  lesions  detected  at  breast
                  nlm.nih.gov/34740800/. DOI: 10.1016/j.mri.2021.10.027.  cancer X-ray screening: capability of diffusion-weighted MR imaging
              [18] WOLFF  A  C,  HAMMOND  M  E  H,  ALLISON  K  H,  et  al.  Human   with MIPs[J]. Radiology, 2016, 278(3): 689-697. DOI: 10.1148/radiol.2015
                  epidermal growth factor receptor 2 testing in breast cancer: American   150425.
                  society  of  clinical  oncology/college  of American  pathologists  clinical   [34] FANG C Y, ZHANG J T, LI J Z, et al. Clinical-radiomics nomogram
                  practice  guideline  focused  update[J].  J  Clin  Oncol,  2018,  36(20):   for  identifying  HER2  status  in  patients  with  breast  cancer:  a  multicenter
                  2105-2122. DOI: 10.1200/JCO.2018.77.8738.            study[J/OL]. Front Oncol, 2022, 12: 922185 [2024-03-18]. https://pubmed.
              [19] WOLFF  A  C,  SOMERFIELD  M  R,  DOWSETT  M,  et  al.  Human   ncbi.nlm.nih.gov/36158700/. DOI: 10.3389/fonc.2022.922185.
                  epidermal growth factor receptor 2 testing in breast cancer: ASCO-college   [35] JIANG Z J, SONG L R, LU H C, et al. The potential use of DCE-MRI
                  of American pathologists guideline update[J]. J Clin Oncol, 2023, 41(22):   texture analysis to predict HER2 2+ status[J/OL]. Front Oncol, 2019,
                  3867-3872. DOI: 10.1200/JCO.22.02864.                9: 242 [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/31032222/. DOI:
              [20] 中国抗癌协会乳腺癌专业委员会 . 中国抗癌协会乳腺癌诊治指南与                     10.3389/fonc.2019.00242.
                  规范(2021 年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI:   [36] SONG L R, LI C L, YIN J D. Texture analysis using semiquantitative
                  10.19401/j.cnki.1007-3639.2021.10.013.               kinetic  parameter  maps  from  DCE-MRI:  preoperative  prediction  of
                  Breast  Cancer  Committee  of  Chinese  anti-Cancer  Association.   HER2  status  in  breast  cancer[J/OL].  Front  Oncol,  2021,  11:  675160
                  Guidelines and norms for diagnosis and treatment of breast cancer of   [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/34168994/. DOI: 10.3389/
                  China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021,   fonc.2021.675160.
                  31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013.  [37] 冯海霞, 顾龙, 安丽华, 等 . 体素内不相干运动联合动态对比增强磁
              [21] 王晓, 朱丽钰, 查小明, 等 . 全容积表观扩散系数直方图定量分析术                 共振成像对乳腺癌 HER-2 基因表达的诊断价值[J]. 临床放射学杂
                  前预测不同亚型乳腺癌新辅助化疗后病理完全缓解的价值[J]. 中华                     志, 2022, 41(8): 1432-1437. DOI: 10.13437/j.cnki.jcr.2022.08.005.
                  放射学杂志, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-2019  FENG  H  X,  GU  L,  AN  L  H,  et  al.  Prediction  of  the  expression  of
                  0522-00439.                                          HER-2  in  breast  cancer  based  on  intravoxel  incoherent  motion  and
                  WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis   dynamic  contrast  enhanced  magnetic  resonance  imaging[J].  J  Clin
                  of  apparent  diffusion  coefficient  for  the  prediction  of  pathological   Radiol, 2022, 41(8): 1432-1437. DOI: 10.13437/j.cnki.jcr.2022.08.005.
                  complete response to neoadjuvant chemotherapy in different subtypes   [38] FUSCO  R,  GRANATA  V,  MAIO  F,  et  al.  Textural  radiomic  features
                  of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/  and  time-intensity  curve  data  analysis  by  dynamic  contrast-enhanced
                  cma.j.cn112149-20190522-00439.                       MRI for early prediction of breast cancer therapy response: preliminary
              [22] WANG W W, ZHANG X D, ZHU L M, et al. Prediction of prognostic   data[J/OL].  Eur  Radiol  Exp,  2020,  4(1):  8  [2024-03-18].  https://
                  factors  and  genotypes  in  patients  with  breast  cancer  using  multiple   pubmed.ncbi.nlm.nih.gov/32026095/. DOI: 10.1186/s41747-019-0141-2.
                  mathematical  models  of  MR  diffusion  imaging[J/OL].  Front  Oncol,   [39] LIANG  M,  CAI  Z  T,  ZHANG  H  M,  et  al.  Machine  learning-based
                  2022, 12: 825264 [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/35174093/.   analysis of rectal cancer MRI radiomics for prediction of metachronous
                  DOI: 10.3389/fonc.2022.825264.                       liver  metastasis[J].  Acad  Radiol,  2019,  26(11):  1495-1504.  DOI:
              [23] WANG  W  W,  LV  S  Q,  XUN  J,  et  al.  Comparison  of  diffusion  kurtosis   10.1016/j.acra.2018.12.019.

               https://www.chinesemri.com                                                                  ·111 ·
   113   114   115   116   117   118   119   120   121   122   123