Page 118 - 磁共振成像2024年7期电子刊
P. 118
磁共振成像 2024年7月第15卷第7期 Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7 临床研究||Clinical Articles
14163 [2024-03-18]. https://pubmed. ncbi. nlm. nih. gov/32843663/. DOI: imaging and dynamic contrast enhanced MRI in prediction of prognostic
10.1038/s41598-020-70940-z. factors and molecular subtypes in patients with breast cancer[J/OL]. Eur J
[7] 王秀红, 陈皇, 宋志刚, 等 . 基于乳腺病理组织学的 HER2 智能预 Radiol, 2022, 154: 110392 [2024-03-18]. https://pubmed.ncbi.nlm.nih.
测[J]. 中华病理学杂志, 2021, 50(4): 344-348. DOI: 10.3760/cma.j. gov/35679701/. DOI: 10.1016/j.ejrad.2022.110392.
cn112151-20200721-00581. [24] JENSEN J H, HELPERN J A, RAMANI A, et al. Diffusional kurtosis
WANG X H, CHEN H, SONG Z G, et al. Intelligent prediction of imaging: the quantification of non-gaussian water diffusion by means
HER2 status based on breast histopathology[J]. Chin J Pathol, 2021, of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6):
50(4): 344-348. DOI: 10.3760/cma.j.cn112151-20200721-00581. 1432-1440. DOI: 10.1002/mrm.20508.
[8] 李周丽, 陈基明, 高静, 等 . MRI 影像组学模型术前预测乳腺癌人表 [25] 周洋, 徐鹏举 . 扩散峰度成像(DKI)在体部应用的研究进展[J]. 复旦
皮生长因子受体 2 表达状态的价值[J]. 磁共振成像, 2023, 14(4): 学报(医学版), 2018, 45(6): 911-915, 920. DOI: 10.3969/j.issn.1672-8467.
82-88. DOI: 10.12015/issn.1674-8034.2023.04.014. 2018.06.027.
LI Z L, CHEN J M, GAO J, et al. Value of MRI image omics model in ZHOU Y, XU P J. Research progress on body diffusion kurtosis
preoperative prediction of human epidermal growth factor receptor 2 imaging(DKI)[J]. Fudan Univ J Med Sci, 2018, 45(6): 911-915, 920.
expression in breast cancer[J]. Chin J Magn Reson Imag, 2023, 14(4): DOI: 10.3969/j.issn.1672-8467.2018.06.027.
82-88. DOI: 10.12015/issn.1674-8034.2023.04.014. [26] ZHOU W P, ZAN X Y, HU X Y, et al. Characterization of breast
[9] LI Q, XIAO Q, LI J W, et al. Value of machine learning with lesions using diffusion kurtosis model-based imaging: an initial
multiphases CE-MRI radiomics for early prediction of pathological experience[J]. J Xray Sci Technol, 2020, 28(1): 157-169. DOI: 10.3233/
complete response to neoadjuvant therapy in HER2-positive invasive XST-190590.
breast cancer[J/OL]. Cancer Manag Res, 2021, 13: 5053-5062 [27] MENG N, WANG X J, SUN J, et al. A comparative study of the value
[2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/34234550/. DOI: 10.2147/ of amide proton transfer-weighted imaging and diffusion kurtosis
CMAR.S304547. imaging in the diagnosis and evaluation of breast cancer[J]. Eur Radiol,
[10] KANG H S, KIM J Y, KIM J J, et al. Diffusion kurtosis MR imaging of 2021, 31(3): 1707-1717. DOI: 10.1007/s00330-020-07169-x.
invasive breast cancer: correlations with prognostic factors and [28] 王婷, 李文武 . 体素内不相干运动联合扩散峰度成像对乳腺癌
molecular subtypes[J]. J Magn Reson Imaging, 2022, 56(1): 110-120. HER-2表达的判断价值[J]. 医学影像学杂志, 2022, 32(1): 46-50.
DOI: 10.1002/jmri.27999. WANG T, LI W W. Prediction of the expression of HER-2in breast
[11] DU S Y, GAO S, ZHANG L N, et al. Improved discrimination of cancer based on intravoxel incoherent motion and diffusion kurtosis
molecular subtypes in invasive breast cancer: comparison of multiple imaging[J]. J Med Imag, 2022, 32(1): 46-50.
quantitative parameters from breast MRI[J/OL]. Magn Reson Imaging, [29] 王铭, 田为中 . 体素内不相干运动扩散加权成像在乳腺癌中的临床
2021, 77: 148-158 [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/33309922/. 应用进展[J]. 临床放射学杂志, 2021, 40(2): 401-404. DOI: 10.13437/
DOI: 10.1016/j.mri.2020.12.001. j.cnki.jcr.2021.02.044.
[12] HUANG Y, LIN Y, HU W, et al. Diffusion Kurtosis at 3.0T as an in WANG M, TIAN W Z. Progress in clinical application of intra-voxel
vivo Imaging Marker for Breast Cancer Characterization: correlation incoherent motion diffusion weighted imaging in breast cancer[J]. J Clin
With Prognostic Factors[J]. J Magn Reson Imaging, 2019, 49(3): Radiol, 2021, 40(2): 401-404. DOI: 10.13437/j.cnki.jcr.2021.02.044.
845-856. DOI: 10.1002/jmri.26249. [30] VIDIĆ I, EGNELL L, JEROME N P, et al. Support vector machine for
[13] LI C L, SONG L R, YIN J D. Intratumoral and peritumoral radiomics breast cancer classification using diffusion-weighted MRI histogram
based on functional parametric maps from breast DCE-MRI for features: preliminary study[J]. J Magn Reson Imaging, 2018, 47(5):
prediction of HER-2 and ki-67 status[J]. J Magn Reson Imaging, 2021, 1205-1216. DOI: 10.1002/jmri.25873.
54(3): 703-714. DOI: 10.1002/jmri.27651. [31] ZHAO M, FU K, ZHANG L, et al. Intravoxel incoherent motion
[14] ZHOU J, TAN H N, LI W, et al. Radiomics signatures based on magnetic resonance imaging for breast cancer: a comparison with
multiparametric MRI for the preoperative prediction of the HER2 benign lesions and evaluation of heterogeneity in different tumor
status of patients with breast cancer[J]. Acad Radiol, 2021, 28(10): regions with prognostic factors and molecular classification[J]. Oncol
1352-1360. DOI: 10.1016/j.acra.2020.05.040. Lett, 2018, 16(4): 5100-5112. DOI: 10.3892/ol.2018.9312.
[15] GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in [32] 王伟康, 林桂涵, 陈春妙, 等 . 基于 MRI 动态增强扫描瘤内联合瘤周
radiomics: making personalized medicine a reality via routine imaging 影像组学列线图术前预测乳腺癌 HER-2状态的价值[J]. 中国中西医
[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846. 结合影像学杂志, 2023, 21(3): 259-264. DOI: 10.3969/j.issn.1672-0512.
[16] ZHANG Q, PENG Y S, LIU W, et al. Radiomics based on multimodal 2023.03.006.
MRI for the differential diagnosis of benign and malignant breast WANG W K, LIN G H, CHEN C M, et al. Value of dynamic enhanced
lesions[J]. J Magn Reson Imaging, 2020, 52(2): 596-607. DOI: 10.1002/ intratumoral MRI combined with a peritumoral radiomics nomogram
jmri.27098. in preoperatively predicting HER-2 status of breast cancer[J]. Chin
[17] FENG W, GAO Y, LU X R, et al. Correlation between molecular Imag J Integr Tradit West Med, 2023, 21(3): 259-264. DOI: 10.3969/j.
prognostic factors and magnetic resonance imaging intravoxel issn.1672-0512.2023.03.006.
incoherent motion histogram parameters in breast cancer[J/OL]. Magn [33] BICKELHAUPT S, LAUN F B, TESDORFF J, et al. Fast and
Reson Imaging, 2022, 85: 262-270 [2024-03-18]. https://pubmed.ncbi. noninvasive characterization of suspicious lesions detected at breast
nlm.nih.gov/34740800/. DOI: 10.1016/j.mri.2021.10.027. cancer X-ray screening: capability of diffusion-weighted MR imaging
[18] WOLFF A C, HAMMOND M E H, ALLISON K H, et al. Human with MIPs[J]. Radiology, 2016, 278(3): 689-697. DOI: 10.1148/radiol.2015
epidermal growth factor receptor 2 testing in breast cancer: American 150425.
society of clinical oncology/college of American pathologists clinical [34] FANG C Y, ZHANG J T, LI J Z, et al. Clinical-radiomics nomogram
practice guideline focused update[J]. J Clin Oncol, 2018, 36(20): for identifying HER2 status in patients with breast cancer: a multicenter
2105-2122. DOI: 10.1200/JCO.2018.77.8738. study[J/OL]. Front Oncol, 2022, 12: 922185 [2024-03-18]. https://pubmed.
[19] WOLFF A C, SOMERFIELD M R, DOWSETT M, et al. Human ncbi.nlm.nih.gov/36158700/. DOI: 10.3389/fonc.2022.922185.
epidermal growth factor receptor 2 testing in breast cancer: ASCO-college [35] JIANG Z J, SONG L R, LU H C, et al. The potential use of DCE-MRI
of American pathologists guideline update[J]. J Clin Oncol, 2023, 41(22): texture analysis to predict HER2 2+ status[J/OL]. Front Oncol, 2019,
3867-3872. DOI: 10.1200/JCO.22.02864. 9: 242 [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/31032222/. DOI:
[20] 中国抗癌协会乳腺癌专业委员会 . 中国抗癌协会乳腺癌诊治指南与 10.3389/fonc.2019.00242.
规范(2021 年版)[J]. 中国癌症杂志, 2021, 31(10): 954-1040. DOI: [36] SONG L R, LI C L, YIN J D. Texture analysis using semiquantitative
10.19401/j.cnki.1007-3639.2021.10.013. kinetic parameter maps from DCE-MRI: preoperative prediction of
Breast Cancer Committee of Chinese anti-Cancer Association. HER2 status in breast cancer[J/OL]. Front Oncol, 2021, 11: 675160
Guidelines and norms for diagnosis and treatment of breast cancer of [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/34168994/. DOI: 10.3389/
China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, fonc.2021.675160.
31(10): 954-1040. DOI: 10.19401/j.cnki.1007-3639.2021.10.013. [37] 冯海霞, 顾龙, 安丽华, 等 . 体素内不相干运动联合动态对比增强磁
[21] 王晓, 朱丽钰, 查小明, 等 . 全容积表观扩散系数直方图定量分析术 共振成像对乳腺癌 HER-2 基因表达的诊断价值[J]. 临床放射学杂
前预测不同亚型乳腺癌新辅助化疗后病理完全缓解的价值[J]. 中华 志, 2022, 41(8): 1432-1437. DOI: 10.13437/j.cnki.jcr.2022.08.005.
放射学杂志, 2020, 54(4): 338-344. DOI: 10.3760/cma.j.cn112149-2019 FENG H X, GU L, AN L H, et al. Prediction of the expression of
0522-00439. HER-2 in breast cancer based on intravoxel incoherent motion and
WANG X, ZHU L Y, ZHA X M, et al. Whole-lesion histogram analysis dynamic contrast enhanced magnetic resonance imaging[J]. J Clin
of apparent diffusion coefficient for the prediction of pathological Radiol, 2022, 41(8): 1432-1437. DOI: 10.13437/j.cnki.jcr.2022.08.005.
complete response to neoadjuvant chemotherapy in different subtypes [38] FUSCO R, GRANATA V, MAIO F, et al. Textural radiomic features
of breast cancer[J]. Chin J Radiol, 2020, 54(4): 338-344. DOI: 10.3760/ and time-intensity curve data analysis by dynamic contrast-enhanced
cma.j.cn112149-20190522-00439. MRI for early prediction of breast cancer therapy response: preliminary
[22] WANG W W, ZHANG X D, ZHU L M, et al. Prediction of prognostic data[J/OL]. Eur Radiol Exp, 2020, 4(1): 8 [2024-03-18]. https://
factors and genotypes in patients with breast cancer using multiple pubmed.ncbi.nlm.nih.gov/32026095/. DOI: 10.1186/s41747-019-0141-2.
mathematical models of MR diffusion imaging[J/OL]. Front Oncol, [39] LIANG M, CAI Z T, ZHANG H M, et al. Machine learning-based
2022, 12: 825264 [2024-03-18]. https://pubmed.ncbi.nlm.nih.gov/35174093/. analysis of rectal cancer MRI radiomics for prediction of metachronous
DOI: 10.3389/fonc.2022.825264. liver metastasis[J]. Acad Radiol, 2019, 26(11): 1495-1504. DOI:
[23] WANG W W, LV S Q, XUN J, et al. Comparison of diffusion kurtosis 10.1016/j.acra.2018.12.019.
https://www.chinesemri.com ·111 ·