Page 33 - 磁共振成像2024年7期电子刊
P. 33
特别关注||Special Focus 磁共振成像 2024年7月第15卷第7期 Chin J Magn Reson Imaging, Jul, 2024, Vol. 15, No. 7
ncbi.nlm.nih.gov/28116231/. DOI: 10.1016/j.nicl.2016.12.020. tumor from post-treatment change in patients with high-grade glioma[J].
[11] VERGER A, STOFFELS G, BAUER E K, et al. Static and dynamic Neuroradiol J, 2023, 36(6): 657-664. DOI: 10.1177/19714009231173108.
18F-FET PET for the characterization of gliomas defined by IDH and [24] QIU J, ZHU M, CHEN C Y, et al. Diffusion heterogeneity and vascular
1p/19q status[J]. Eur J Nucl Med Mol Imag, 2018, 45(3): 443-451. perfusion in tumor and peritumoral areas for prediction of overall
DOI: 10.1007/s00259-017-3846-6. survival in patients with high-grade glioma[J/OL]. Magn Reson
[12] SMITH N J, DEATON T K, TERRITO W, et al. Hybrid Imaging, 2023, 104: 23-28 [2024-02-26]. https://pubmed.ncbi.nlm.nih.
18 F-fluoroethyltyrosine PET and MRI with perfusion to distinguish gov/37734575/. DOI: 10.1016/j.mri.2023.09.004.
disease progression from treatment-related change in malignant brain [25] LI B, XU D, ZHOU J, et al. Monitoring bevacizumab-induced tumor
tumors: the quest to beat the toughest cases[J]. J Nucl Med, 2023, vascular normalization by intravoxel incoherent motion diffusion-weighted
64(7): 1087-1092. DOI: 10.2967/jnumed.122.265149. MRI[J]. J Magn Reson Imaging, 2022, 56(2): 427-439. DOI: 10.1002/
[13] MÜLLER M, WINZ O, GUTSCHE R, et al. Static FET PET radiomics for jmri.28012.
the differentiation of treatment-related changes from glioma progression[J]. [26] ZHU L N, WU J, ZHANG H, et al. The value of intravoxel incoherent
J Neurooncol, 2022, 159(3): 519-529. DOI: 10.1007/s11060-022-04089-2. motion imaging in predicting the survival of patients with astrocytoma[J].
[14] LOHMANN P, ELAHMADAWY M A, GUTSCHE R, et al. FET PET Acta Radiol, 2021, 62(3): 423-429. DOI: 10.1177/0284185120926907.
radiomics for differentiating pseudoprogression from early tumor [27] LAW I, ALBERT N L, ARBIZU J, et al. Joint EANM/EANO/RANO
progression in glioma patients post-chemoradiation[J/OL]. Cancers, 2020, practice guidelines/SNMMI procedure standards for imaging of
12(12): 3835 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/33353180/. gliomas using PET with radiolabelled amino acids and [ F]FDG:
18
DOI: 10.3390/cancers12123835. version 1.0[J]. Eur J Nucl Med Mol Imaging, 2019, 46(3): 540-557.
18
[15] MIHOVILOVIC M I, KERTELS O, HÄNSCHEID H, et al. O-(2-( F) DOI: 10.1007/s00259-018-4207-9.
fluoroethyl) -L-tyrosine PET for the differentiation of tumour recurrence [28] WICK W, ROTH P, HARTMANN C, et al. Long-term analysis of the
from late pseudoprogression in glioblastoma[J]. J Neurol Neurosurg NOA-04 randomized phase III trial of sequential radiochemotherapy of
Psychiatry, 2019, 90(2): 238-239. DOI: 10.1136/jnnp-2017-317155. anaplastic glioma with PCV or temozolomide[J]. Neuro Oncol, 2016,
[16] MARNER L, LUNDEMANN M, SEHESTED A, et al. Diagnostic 18(11): 1529-1537. DOI: 10.1093/neuonc/now133.
accuracy and clinical impact of[18F]FET PET in childhood CNS tumors[J]. [29] VETTERMANN F, SUCHORSKA B, UNTERRAINER M, et al.
Neuro Oncol, 2021, 23(12): 2107-2116. DOI: 10.1093/neuonc/noab096. Non-invasive prediction of IDH-wildtype genotype in gliomas using
[17] BIHAN D L, BRETON E, LALLEMAND D, et al. MR imaging of dynamic F-FET PET[J]. Eur J Nucl Med Mol Imaging, 2019, 46(12):
18
intravoxel incoherent motions: application to diffusion and perfusion in 2581-2589. DOI: 10.1007/s00259-019-04477-3.
neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/ [30] TATKOVIC A, MCBEAN R, PERKINS E, et al. 18 F-FET PET
radiology.161.2.3763909. maximum standard uptake value and WHO tumour classification grade
[18] IIMA M, BIHAN D L. Clinical intravoxel incoherent motion and in glioma[J]. J Med Imaging Radiat Oncol, 2022, 66(3): 332-336. DOI:
diffusion MR imaging: past, present, and future[J]. Radiology, 2016, 10.1111/1754-9485.13322.
278(1): 13-32. DOI: 10.1148/radiol.2015150244. [31] HAN Y, YAN L F, WANG X B, et al. Structural and advanced imaging
[19] WANG C C, DONG H B. Ki-67 labeling index and the grading of cerebral in predicting MGMT promoter methylation of primary glioblastoma: a
gliomas by using intravoxel incoherent motion diffusion-weighted imaging region of interest based analysis[J/OL]. BMC Cancer, 2018, 18(1): 215
and three-dimensional arterial spin labeling magnetic resonance imaging[J]. [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/29467012/. DOI: 10.1186/
Acta Radiol, 2020, 61(8): 1057-1063. DOI: 10.1177/0284185119891694. s12885-018-4114-2.
[20] PARK Y W, AHN S S, PARK C J, et al. Correction to: diffusion and [32] SONG S S, SHAN Y, WANG L M, et al. MGMT promoter methylation
perfusion MRI may predict EGFR amplification and the TERT status shows no effect on [ F]FET uptake and CBF in gliomas: a
18
promoter mutation status of IDH-wildtype lower-grade gliomas[J/OL]. stereotactic image-based histological validation study[J]. Eur Radiol,
Eur Radiol, 2021, 31(3): 1782 [2024-02-26]. https://pubmed.ncbi.nlm. 2022, 32(8): 5577-5587. DOI: 10.1007/s00330-022-08606-9.
nih.gov/32910232/. DOI: 10.1007/s00330-020-07257-y. [33] LU J, LI X, LI H L. Perfusion parameters derived from MRI for
[21] SHENG Y R, DANG X F, ZHANG H, et al. Correlations between preoperative prediction of IDH mutation and MGMT promoter methylation
intravoxel incoherent motion-derived fast diffusion and perfusion fraction status in glioblastomas[J/OL]. Magn Reson Imaging, 2021, 83: 189-195
parameters and VEGF- and MIB-1-positive rates in brain gliomas: an [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/34506909/. DOI: 10.1016/
intraoperative MR-navigated, biopsy-based histopathologic study[J]. Eur j.mri.2021.09.005.
Radiol, 2023, 33(8): 5236-5246. DOI: 10.1007/s00330-023-09506-2. [34] LOHMANN P, STAVRINOU P, LIPKE K, et al. FET PET reveals
[22] ZHOU J, LI H F, MA X M, et al. Intravoxel incoherent motion considerable spatial differences in tumour burden compared to
diffusion-weighted imaging and 3D-ASL to assess the value of ki-67 conventional MRI in newly diagnosed glioblastoma[J]. Eur J Nucl Med
labeling index and grade in glioma[J/OL]. Scanning, 2022, 2022: Mol Imaging, 2019, 46(3): 591-602. DOI: 10.1007/s00259-018-4188-8.
8429659 [2024-02-26]. https://pubmed.ncbi.nlm.nih.gov/36105553/. DOI: [35] HARAT M, RAKOWSKA J, HARAT M, et al. Combining amino acid PET
10.1155/2022/8429659. and MRI imaging increases accuracy to define malignant areas in adult
[23] TUNLAYADECHANONT P, PANYAPING T, CHANSAKUL T, et al. glioma[J/OL]. Nat Commun, 2023, 14(1): 4572 [2024-02-26]. https://
Intravoxel incoherent motion for differentiating residual/recurrent pubmed.ncbi.nlm.nih.gov/37516762/. DOI: 10.1038/s41467-023-39731-8.
(上接第14页)
[57] ANDERSEN K F, JENSEN K E, LOFT A. PET/MR imaging in value of hybrid PET/MR imaging versus MR or PET performed
musculoskeletal disorders[J]. PET Clin, 2016, 11(4): 453-463. DOI: separately to assess cardiovascular disease[J]. Rev Esp Cardiol, 2021,
10.1016/j.cpet.2016.05.007. 74(4): 303-311. DOI: 10.1016/j.rec.2020.06.034.
[58] NAZIR M S, ISMAIL T F, REYES E, et al. Hybrid positron emission [65] CARDOSO R, LEUCKER T M. Applications of PET-MR imaging in
tomography-magnetic resonance of the heart: current state of the art cardiovascular disorders[J]. PET Clin, 2020, 15(4): 509-520. DOI:
and future applications[J]. Eur Heart J Cardiovasc Imaging, 2018, 10.1016/j.cpet.2020.06.007.
19(9): 962-974. DOI: 10.1093/ehjci/jey090. [66] GUO K, WANG J J, CUI B X, et al. Correction to: [18F]FDG PET/
[59] BERGQUIST P J, CHUNG M S, JONES A, et al. Cardiac applications MRI and magnetoencephalography may improve presurgical
of PET-MR[J/OL]. Curr Cardiol Rep, 2017, 19(5): 42 [2024-03-05]. localization of temporal lobe epilepsy[J/OL]. Eur Radiol, 2022, 32(5):
https://pubmed.ncbi.nlm.nih.gov/28401505/. DOI: 10.1007/s11886-017- 3611 [2024-03-05]. https://pubmed.ncbi.nlm.nih.gov/35312792/. DOI:
0847-9. 10.1007/s00330-022-08546-4.
18
[60] CHEN W G, JEUDY J. Assessment of myocarditis: cardiac MR, PET/ [67] FLAUS A, MELLERIO C, RODRIGO S, et al. F-FDG PET/MR in
CT, or PET/MR?[J/OL]. Curr Cardiol Rep, 2019, 21(8): 76 [2024-03-05]. focal epilepsy: a new step for improving the detection of epileptogenic
https://pubmed.ncbi.nlm.nih.gov/31243587/. DOI: 10.1007/s11886-019- lesions[J/OL]. Epilepsy Res, 2021, 178: 106819 [2024-03-05]. https://
1158-0. pubmed.ncbi.nlm.nih.gov/34847426/. DOI: 10.1016/j.eplepsyres.2021.
[61] KONG E J, LEE S H, CHO I H. Myocardial fibrosis in hypertrophic 106819.
cardiomyopathy demonstrated by integrated cardiac F-18 FDG PET/ [68] BORJA A J, HANCIN E C, KHOSRAVI M, et al. Applications of
MR[J]. Nucl Med Mol Imaging, 2013, 47(3): 196-200. DOI: 10.1007/ hybrid PET/magnetic resonance imaging in central nervous system
s13139-013-0201-0. disorders[J]. PET Clin, 2020, 15(4): 497-508. DOI: 10.1016/j.cpet.2020.
[62] MCKENNEY-DRAKE M L, MOGHBEL M C, PAYDARY K, et al. 06.004.
F-NaF and F-FDG as molecular probes in the evaluation of [69] ZHANG X Y, YANG Z L, LU G M, et al. PET/MR imaging: new
18 18
atherosclerosis[J]. Eur J Nucl Med Mol Imaging, 2018, 45(12): 2190-2200. frontier in Alzheimer's disease and other dementias[J/OL]. Front Mol
DOI: 10.1007/s00259-018-4078-0. Neurosci, 2017, 10: 343 [2024-03-05]. https://pubmed.ncbi.nlm.nih.
[63] SENDERS M L, CALCAGNO C, TAWAKOL A, et al. PET/MR gov/29163024/. DOI: 10.3389/fnmol.2017.00343.
imaging of inflammation in atherosclerosis[J]. Nat Biomed Eng, 2023, [70] HENRIKSEN O M, MARNER L, LAW I. Clinical PET/MR imaging
7(3): 202-220. DOI: 10.1038/s41551-022-00970-7. in dementia and neuro-oncology[J]. PET Clin, 2016, 11(4): 441-452.
[64] BARRIO P, LÓPEZ-MELGAR B, FIDALGO A, et al. Additional DOI: 10.1016/j.cpet.2016.05.003.
·26 · https://www.chinesemri.com